【廣告】
中考數(shù)學解題實用方法
配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的多的是配成完全平方式。這就需要考生根據(jù)自身情況制訂最后沖刺的學習計劃,抓住各科復習的重點。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
判別式法與韋達定理
一元二次方程ax2 bx c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
中考沖刺:突破英語閱讀理解
注意閱讀技巧訓練
可以通過反復精做一篇閱讀,直到全對,不斷總結、調整和強化獲取表層信息及內在信息或猜測、推理、判斷、概括的能力;還要善于找關鍵句,在很多文章里段和每段的句往往是關鍵句,可以幫助同學們理解整個文章的主題或某一段的概括。在閱讀中,要注意抓住中心思想(Main idea),以及文中出現(xiàn)的who、where、when、what及why等關鍵詞。做題時要先做會做的、有把握得分的題,遇到少數(shù)難題,如果兩三分鐘內還沒有較好思路,就要先做其他容易題,等到最后再回過頭來攻堅。
調整心態(tài)
有時候考試發(fā)揮失常,成績不是很理想,不能影響自己的學習和生活。好馬還有失前蹄的時候呢,我們完全不要太在意一次考試,因為我們的實力還在,不要因為一次失誤就全盤否定自己。運用此法,應注意如下三點:①編口訣的內容,一般應是重要的、有規(guī)律性的或能明確理成條文型的。另外,考試中發(fā)現(xiàn)的問題,正好給我們提高改進自己提供了一個比較明確的方向,改進自己的不足,總比真正中考中才遇到來的好。
保持充足的自信心
要多與同學交流學習心得和體會,正確對待自己的短板,發(fā)揮自己的長處。均衡對待所有功課,不要拋棄任何一科。比較好的科目一定要保持足夠的重視,稍微弱的一些的要努力正確提高,確實沒有掌握的,不要投太多的精力,免得顧此失彼。(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。樹立良好的自信心,相信自己的能力,就一定能成功!