【廣告】
為了探索大負荷大流量風機的關鍵氣動設計技術和內(nèi)部流動機理,本文設計了一臺烘干機配套風機,其壓力比為1.20,負荷系數(shù)為0.83。從圖17可以看出,定子葉片損失減小,裕度增大,這與不同截面的S1流面性能分析結(jié)果相似。詳細研究了流量系數(shù)、反力等設計參數(shù)的影響規(guī)律,給出了相應的選擇原則。分析了葉片負荷調(diào)節(jié)、葉片彎曲和葉片端部彎曲對葉柵流動、級匹配和級性能的影響,給出了高負荷軸流風機三維葉片設計的基本原則。同時,開發(fā)了S1流面協(xié)同優(yōu)化方法,取得了較好的效果。降低了定子損耗,增大了風機裕度。高壓風機的設計通常采用離心風機,但離心風機存在迎風面積大、流量小、效率低等缺點。針對大流量、高壓力比、率的設計要求,如何完成單級軸流設計成為研究的重點。長期以來,軸流風機的設計方法得到了發(fā)展。從孤立葉型法、葉柵法、降功率法到目前廣泛采用的準三維、全三維氣動設計方法,甚至到S1流面葉型優(yōu)化[6]、三維葉型優(yōu)化、烘干機配套風機三維葉型技術,已經(jīng)有了大量的研究工作。用于提高設計方法的準確性和快速性。以率、高負荷為設計目標,通過合理選擇總體參數(shù),優(yōu)化了烘干機配套風機流面葉片的初步設計和三維疊加,實現(xiàn)了軸流風機的氣動設計。
烘干機配套風機初步設計完成后,本文的氣動設計流程在初步設計中進一步優(yōu)化了S1流面上葉片和葉片的三維疊加,從而完成了詳細的氣動設計,達到了設計目標。詳細研究了流量系數(shù)、反力等設計參數(shù)的影響規(guī)律,給出了相應的選擇原則。除求解三維流場的N-S方程外,其余部分由氣動中心自己的程序完成,保證了過程的平穩(wěn)、快速。流量系數(shù)的選擇通過改變速度三角形的軸向速度來影響轉(zhuǎn)子和定烘干機配套風機葉片的擴散系數(shù)。隨著流量系數(shù)的增大,定、轉(zhuǎn)子葉片的擴散系數(shù)均減小。本文的初步設計方案設置為圖3中箭頭所示的方案,限制為0.55。同時,烘干機配套風機的流量系數(shù)的選擇對級效率有影響:級效率隨動、靜葉進口馬赫數(shù)的增加而降低;級效率隨流量系數(shù)的增加而降低,執(zhí)行機構(gòu)葉片損失隨T進口載荷的增加而增加。轉(zhuǎn)子和定子葉片,而轉(zhuǎn)子葉片進口馬赫數(shù)略有增加,導致級效率提高;定子進口馬赫數(shù)隨反應性降低而增加,導致定子損失增加。同時,反應性的大小意味著轉(zhuǎn)子和定子葉片需要達到的靜壓上升的大小。隨著反應性的增加,動葉擴壓系數(shù)增大,靜葉擴壓系數(shù)隨反應性的減小而增大。本文選取一定的反應性使轉(zhuǎn)子和定子葉片的擴散系數(shù)基本相同。
本文列舉了烘干機配套風機靜音扇葉,說明了S1流面優(yōu)化設計在風機詳細設計過程中的作用。比較了不同葉尖間隙形狀下的內(nèi)部流動特性、總壓分布和葉輪作用力,分析了漸縮型和漸擴型。根系頂部三個橫截面的流入條件不同,如表3所示。根部設計點的進口氣流角較大,烘干機配套風機工作范圍不同于其它兩段。由于轉(zhuǎn)子葉片泄漏流的影響,頂部馬赫數(shù)較小,工作范圍較大。采用多島遺傳算法進行優(yōu)化,種群44,孤島7,代數(shù)7。三個截面共優(yōu)化了22個葉片型線參數(shù),包括較大厚度位置、安裝角度、中弧控制點、吸入面控制點等。當優(yōu)化后的葉片型線三維疊加時,烘干機配套風機葉片上半部分略微向后彎曲,可能導致優(yōu)化后的定子葉片損失增加。將優(yōu)化后的靜葉恢復到級環(huán)境中,得到了三維數(shù)值模擬結(jié)果。在設計點流量下,靜葉吸力面邊界層變薄,堵塞面積減小。計算了級間環(huán)境下兩葉型風機特性線和兩定子葉片變攻角特性線。從圖17可以看出,定子葉片損失減小,裕度增大,這與不同截面的S1流面性能分析結(jié)果相似。但由于烘干機配套風機氣流角的匹配問題,級效率沒有明顯提高,之間失速裕度由27.1%提高到34.9%。針對葉片高度方向的不均勻進口流動情況,在詳細設計中采用了端部彎曲技術來匹配定、轉(zhuǎn)子葉片之間的流動角。
以烘干機配套風機帶后導葉的可調(diào)軸流風機模型為研究對象,如圖1所示。根據(jù)機翼理論,通過吸力面的速度高于通過壓力面的速度,吸力面后緣形成高速區(qū)。風扇由集熱器、活動葉片、后導葉和擴散器組成。風機轉(zhuǎn)子葉片采用翼型結(jié)構(gòu),動葉14片,導葉15片,葉輪直徑d為1500mm,烘干機配套風機葉頂間隙delta為4.5mm,風機工作轉(zhuǎn)速為1200r/min,輪轂比為0.6,設計工況安裝角為32度,相應設計流量和總壓為37.14m3_S-1和2348pa,結(jié)構(gòu)簡圖給出了葉頂間隙均勻和不均勻的方程,其中前緣間隙和后緣間隙分別為1和2。leand te表示葉片的前緣和后緣。為了保證前緣與后緣的平均間隙為4.5mm,選取六種非均勻間隙進行分析?,F(xiàn)代軸流風機的相對徑向間隙為0.8%~1.5%[18],改變后風機葉尖間隙的較小相對徑向間隙為1%,滿足正常運行的要求,如表1所示。其中方案1~3為漸變收縮型,方案4~6為漸變膨脹型??刂品匠贪ㄈS穩(wěn)態(tài)雷諾時均N-S方程和可實現(xiàn)的K-E湍流模型。可實現(xiàn)的K-E模型可以有效地解決旋轉(zhuǎn)運動、邊界層流動分離、強逆壓梯度、二次流和回流等問題。烘干機配套風機采用分離隱式方法計算,壁面采用防滑邊界條件,壓力-速度耦合采用簡單算法。采用二階逆風法離散了與空間有關的對流項、擴散項和湍流粘性系數(shù),忽略了重力和壁面粗糙度的影響。