【廣告】
國(guó)內(nèi)外SPS的發(fā)展與應(yīng)用狀況
國(guó)內(nèi)外SPS的發(fā)展與應(yīng)用狀況
SPS技術(shù)是在粉末顆粒間直接通入脈沖電流進(jìn)行加熱燒結(jié),因此在有的文獻(xiàn)上也被稱為等離子活化燒結(jié)或等離子輔助燒結(jié)(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美國(guó)科學(xué)家就提出了脈沖電流燒結(jié)原理,但是直到1965年,脈沖電流燒結(jié)技術(shù)才在美、日等國(guó)得到應(yīng)用。另外,還已發(fā)現(xiàn)晶粒隨SPS燒結(jié)溫度變化比較緩慢[7],因此SPS制備納米材料的機(jī)理和對(duì)晶粒長(zhǎng)大的影響還需要做進(jìn)一步的研究。日本獲得了SPS技術(shù)的專利,但當(dāng)時(shí)未能解決該技術(shù)存在的生產(chǎn)效率低等問題,因此SPS技術(shù)沒有得到推廣應(yīng)用。
1988年日本研制出第yi臺(tái)工業(yè)型SPS裝置,并在新材料研究領(lǐng)域內(nèi)推廣使用。1990年以后,日本推出了可用于工業(yè)生產(chǎn)的SPS第三代產(chǎn)品,具有10~100t 的燒結(jié)壓力和脈沖電流5000~8000A。近又研制出壓力達(dá)500t,脈沖電流為25000A的大型SPS裝置。而等離子體的另一個(gè)很有潛力的應(yīng)用領(lǐng)域是在陶瓷材料的燒結(jié)方面[1]。由于SPS技術(shù)具有快速、低溫、gao效率等優(yōu)點(diǎn),近幾年國(guó)外許多大學(xué)和科研機(jī)構(gòu)都相繼配備了SPS燒結(jié)系統(tǒng),并利用SPS進(jìn)行新材料的研究和開發(fā)[3]。1998年瑞典購(gòu)進(jìn)SPS燒結(jié)系統(tǒng),對(duì)碳化物、氧化物、生物陶瓷等材料進(jìn)行了較多的研究工作[4]。
國(guó)內(nèi)近三年也開展了用SPS技術(shù)制備新材料的研究工作[1,3],引進(jìn)了數(shù)臺(tái)SPS燒結(jié)系統(tǒng),主要用來燒結(jié)納米材料和陶瓷材料[5~8]。SPS作為一種材料制備的全新技術(shù),已引起了國(guó)內(nèi)外的廣泛重視。
粉末冶金廠納米材料
致密納米材料的制備越來越受到重視。利用傳統(tǒng)的熱壓燒結(jié)和熱等靜壓燒結(jié)等方法來制備納米材料時(shí),很難保證能同時(shí)達(dá)到納米尺寸的晶粒和完全致密的要求。利用SPS技術(shù),由于加熱速度快,燒結(jié)時(shí)間短,可顯著抑制晶粒粗化。成型的目的是制得一定形狀和尺寸的壓坯,并使其具有一定的密度和強(qiáng)度。例如:用平均粒度為5μm的TiN粉經(jīng)SPS燒結(jié)(1963K,196~382MPa,燒結(jié)5min),可得到平均晶粒65nm的TiN密實(shí)體[3]。文獻(xiàn)[3]中引用有關(guān)實(shí)例說明了SPS燒結(jié)中晶粒長(zhǎng)大受到極大限度的抑制,所制得燒結(jié)體無疏松和明顯的晶粒長(zhǎng)大。
?粉末冶金技術(shù)的優(yōu)勢(shì)
粉末冶金技術(shù)的優(yōu)勢(shì)
1、絕大多數(shù)難熔金屬和化合物,假合金,多孔材料只能用粉末冶金法制造。
2、由于粉末冶金方法可以壓制成終尺寸的緊湊型,并且不需要或不需要后續(xù)的機(jī)械加工,可以大大節(jié)省金屬,降低產(chǎn)品成本。粉末冶金制造的產(chǎn)品,金屬損失僅為1-5%,而在生產(chǎn)中使用的普通鑄造方法,金屬損失可能會(huì)達(dá)到80%以上。
3、由于粉末冶金技術(shù)在生產(chǎn)過程中材料不熔化,不混合由坩堝和脫氧劑引起的雜質(zhì),一般在真空和還原氣氛中燒結(jié),不怕氧化,也不會(huì)發(fā)生任何物質(zhì)污染,因此可以制備高純度材料。
4、粉末冶金法可以保證材料組成比的精度和均勻性。
5、粉末冶金適用于生產(chǎn)相同形狀和數(shù)量的產(chǎn)品,特別是齒輪等產(chǎn)品的高加工成本,粉末冶金工藝可大大降低生產(chǎn)成本。