【廣告】
人工智能控制器
由于控制簡(jiǎn)單,直流傳動(dòng)在過(guò)去得到了廣泛的使用。但由于它們眾所周知的限制以及DSP技術(shù)的進(jìn)步,直流傳動(dòng)正逐漸被的交流傳動(dòng)所取代。但近,許多廠商也推出了一些改進(jìn)的直流驅(qū)動(dòng)產(chǎn)品,但都沒(méi)有使用人工智能技術(shù)。相信使用人工智能的直流傳動(dòng)技術(shù)能得到進(jìn)一步的提高。智能技術(shù)在電氣傳動(dòng)技術(shù)中占相當(dāng)重要的地位,特別是自適應(yīng)模糊神經(jīng)元控制器在性能傳動(dòng)產(chǎn)品中將得到廣泛應(yīng)用
誤差反向傳播技術(shù)是多層前聵ANN常用的學(xué)習(xí)技術(shù)。如果網(wǎng)絡(luò)有足夠多的隱藏層和隱藏結(jié)點(diǎn)以及適宜的激勵(lì)函數(shù),多層ANN只能實(shí)現(xiàn)需要的映射,沒(méi)有直接的技術(shù)選擇優(yōu)隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),通常用嘗試法解決這個(gè)問(wèn)題,反向傳播訓(xùn)練算法是基本的快下降法,輸出結(jié)點(diǎn)的誤差反饋回網(wǎng)絡(luò),用于權(quán)重調(diào)整,搜索優(yōu)。
也有一些的文章論述運(yùn)用模糊邏輯控制感應(yīng)電機(jī)的磁通和力矩。它的輸入標(biāo)定因子是變化的。實(shí)驗(yàn)結(jié)果也驗(yàn)證了所提方案的有效性。該系統(tǒng)中模糊速度控制器與常規(guī)的PI速度控制器和CRPWM塑變器一起使用,它往往用來(lái)補(bǔ)償可能的慣性和負(fù)載轉(zhuǎn)矩的擾動(dòng)。神經(jīng)網(wǎng)絡(luò)的應(yīng)用 現(xiàn)如今,有大量文章討論神經(jīng)網(wǎng)絡(luò)在交流電機(jī)和驅(qū)動(dòng)系統(tǒng)的條件監(jiān)測(cè)和診斷中的運(yùn)用。
有很多方法來(lái)實(shí)現(xiàn)這個(gè)過(guò)程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實(shí)現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速,知識(shí)庫(kù)由數(shù)據(jù)庫(kù)和語(yǔ)言控制規(guī)則庫(kù)組成。開(kāi)發(fā)規(guī)則庫(kù)的主要方法是:把的知識(shí)和經(jīng)歷用于應(yīng)用和控制目標(biāo);建模操作器的控制行動(dòng);建模過(guò)程;使用自適應(yīng)模糊控制器和人工神經(jīng)網(wǎng)絡(luò)推理機(jī)制。推理機(jī)是模糊控制器的核心