【廣告】
特點
1.攪拌時間5 min~12 min;
2.混合均勻性好,CV值小于2.5≤5%。
3.混合比為1≤5 0 0;
4.充填系數(shù)為10-95%;
5.顆粒損傷小;
6.混合倉也可作為正壓相輸送的輸送罐,即混合物料可直接通過氣力輸送排出。
7.無機械運動部件,可靠性高,無異物;
8.能耗低,工作,占用空間小,安裝方便,清洗和維護方便;
9.對于化學(xué)性質(zhì)不穩(wěn)定的材料,可以使用惰性氣體進行混合和運輸。
10.整個304不銹鋼沒有死角。
11.符合GMP要求
12.可由CIP清洗。
四、涂層材料
在金屬表面加上一層新的材料,將會給材料帶來新的性能。
1、涂層的構(gòu)成
金屬與合金超微粉體涂層材料:一部分元素打底,如鎳、鉻、銅、鐵。然后加上一層形成超微粉合金粉末,如鋁、炭、硼、硅等。
2、熱障涂層(TBC:Thermal Barred Coating)
無機非金屬材料與陶瓷超微粉料形成復(fù)合涂層??紤]到陶瓷材料的熔點高,只好在涂層與基體金屬之間增加一層過渡材料,以保證結(jié)合牢固。目前美國飛機渦輪發(fā)動機葉片上涂有TBC材料。
3、隱身材料涂層
美國F117隱形飛機表面涂有隱身涂層材料,即所謂隱形飛機。
隱身涂層材料構(gòu)成:使用納米級粉料的涂層,飛機表面包覆一層紅外與微波隱身材料。它具有優(yōu)異的寬頻帶微波吸收能力,可以逃避雷達的監(jiān)視。
4、隱形原理:
原理之一:
隱身材料中有多種納米粒子,其尺寸小于紅外及雷達波長。因此納米微粒對這兩種波的透過率比常規(guī)材料強得多,反射率減少,探測器接收到的信號弱。
原理之二:
納米微粒的比表面積大,比一般材料大2-4個數(shù)量級,對紅外和雷達波的吸收率比常規(guī)材料大,導(dǎo)致反射率減少,探測器接收到的信號弱。
粉體粒度對陶瓷的影響 壓電陶瓷是一種能夠?qū)崿F(xiàn)機械能和電能相互轉(zhuǎn)換的功能陶瓷材料。與壓電單晶材料相比,具有機電耦合系數(shù)高,壓電性能可調(diào)節(jié)性好,化學(xué)性質(zhì)穩(wěn)定,易于制備且能制得各種形狀、尺寸和任意極化方向的產(chǎn)品,價格低廉等優(yōu)點,被廣泛應(yīng)用于、電子設(shè)備、生物以及航空航天等高新技術(shù)領(lǐng)域。然而,目前所使用的壓電陶瓷體系主要是鉛基壓電陶瓷,這些陶瓷材料中PbO(或Pb3O4)的含量約占原料總質(zhì)量的70%左右。由于PbO、Pb3O4等含鉛化合物在高溫時的揮發(fā)性,這些陶瓷在生產(chǎn)、使用及廢棄過程中都會對人類健康和生態(tài)環(huán)境造成很大的危害。由于避免了高速射流對固定沖擊部件的磨損,因此可生產(chǎn)較高純度的產(chǎn)品。如果對含鉛陶瓷器件回收實施無公害處理,所需成本也會很高。另一方面,PbO的揮發(fā)也會造成陶瓷的化學(xué)計量比偏離配方中的化學(xué)計量比,造成產(chǎn)品的一致性和重復(fù)性降低。因此,研制和開發(fā)對環(huán)境友好的無鉛壓電陶瓷成為一項緊迫且具有重大實用意義的課題。