【廣告】
換熱器流動傳熱性能模擬和等人釆用多孔介質(zhì)模型對液態(tài)金屬換熱器和蒸汽發(fā)生器進行了數(shù)值模擬計算,并將得到的結(jié)果與試驗結(jié)果進行對比。考慮介質(zhì)在管束間流動各項異性的特點,在分布阻力和體積多孔度的基礎上,提出了表面滲透度的概念,將其與試驗結(jié)果進行對比,取得了理想的結(jié)果。采用多孔介質(zhì)模型,對電廠蒸汽冷凝器的工作特性進行了數(shù)值模擬計算。換熱器內(nèi)砂沉積對結(jié)垢位置的影響換熱器內(nèi)管壁結(jié)垢主要受其液體介質(zhì)含砂濃度的影響,對管殼式換熱器殼程流場進行了液一固兩相流數(shù)值模擬,根據(jù)模擬結(jié)果分析,確定換熱器的主要砂沉積位置。由于此模型的物理過程存在相變,導致模擬變得更加復雜,因而計算中采用了簡單的各向同性假設和一方程模型,并將其與試驗結(jié)果進行對比,結(jié)果吻合較好。
N Jiang和J Li對螺旋管式換熱器的壓力降進行了數(shù)值模擬研究。Ozkaya和Aradag等人[4]利用CFD軟件數(shù)值模擬研究了V字形密封板式換熱器的流動傳熱特性,模擬不同進出口溫度和質(zhì)量流率的工況,得到了換熱器冷端和熱端的出口溫度和壓降,基于實驗數(shù)據(jù),分析了不同努塞爾數(shù)和摩擦系數(shù)的相關性。換熱器是油田化工和其他許多工業(yè)部門廣泛應用的一種通用工藝設備,其中管殼式換熱器在石油化工行業(yè)中應用尤為廣泛。Kotcioglu i和Nasiri KM等人應用理想換熱器模型進行數(shù)值模擬研究,使用修改后的k-‘湍流模型,得到矩形通道板翅縱向打斷、放大和收縮時的溫度、速度和壓力分布圖。
冷凝器生產(chǎn)廠家采用有限體積法計算模擬流動傳熱過程的基本理論和方法,揭示了三葉孔板換熱器殼側(cè)傳熱強化的物理機制,數(shù)值模擬還表明在本次研究范圍之內(nèi),改變?nèi)~孔板板距對殼側(cè)強化傳熱速率影響不明顯,但對流動阻力和綜合性能的影響較大。瑞流模型對殼程流體流動與傳熱進行了數(shù)值研究,分析了三葉孔板換熱器殼程流動與傳熱特性。流經(jīng)塊支撐板后,流體已充分發(fā)展,并且隨著殼程結(jié)構(gòu)周期性變化,傳熱與壓降也呈現(xiàn)周期性變化。提供了一個數(shù)值程序設計優(yōu)化熱交換器的其他幾何參數(shù),比如直徑和角度的入口和出口管道和粒子注入模式。在支撐板附近,流體流速變大,形成射流,并且由于支撐板阻擋,在支撐板前面和尾部產(chǎn)生二次流,能有效沖刷管壁,減薄流動邊界層,起到強化傳熱作用。
隨著結(jié)塘厚度的增加,換熱器管程出口溫度升高,殼程出口溫度降低。由于換熱面污據(jù)的存在,增大了換熱面的導熱熱阻,減小了其導熱系數(shù),使管殼程的傳熱系數(shù)降低,從而影響了換熱器的換熱性能。最終導致?lián)Q熱管程出口溫度升高,殼程出口溫度降低。采用換熱器的傳熱系數(shù)作為換熱器換熱效果的評價標準,以此來對比各組結(jié)坂工況的換熱器傳熱性能。隨著污振厚度的增加,換熱器的傳熱系數(shù)降低,這是由于污塘的存在,導致了換熱面的導熱熱阻增加,導熱系數(shù)減小,導致的換熱器傳熱系數(shù)降低,換熱效率減小。隨著污振厚度的增加,換熱器的傳熱系數(shù)降低,這是由于污塘的存在,導致了換熱面的導熱熱阻增加,導熱系數(shù)減小,導致的換熱器傳熱系數(shù)降低,換熱效率減小。這說明:隨著換熱面結(jié)塘厚度旳增加,換熱器的傳熱性能降低。且隨著結(jié)拒厚度的增加,換熱器傳熱性能的這種降低趨勢越發(fā)平緩。