【廣告】
(一)刀具分類
刀具常按加工方式和具體用途,分為車刀、孔加工刀具、銑刀、拉刀、螺紋刀具、齒輪刀具、自動(dòng)線及數(shù)控機(jī)床刀具和鉸刀等幾大類型。
刀具還可以按其它方式進(jìn)行分類,
如按所用材料分為高速鋼具、硬質(zhì)合金刀具、具、立方氮化硼(CBN)刀具和金剛石刀具等;
按結(jié)構(gòu)分為整體刀具、鑲片刀具、機(jī)夾刀具和復(fù)合刀具等;
按是否標(biāo)準(zhǔn)化分為標(biāo)準(zhǔn)刀具和非標(biāo)準(zhǔn)刀具等。
(二)常用刀具簡(jiǎn)介
1車刀
車刀是金屬切削不使用簽名加工中應(yīng)用廣的一種刀具。它可以在車床上加工外圓、端平面、螺紋、內(nèi)孔,也可用于切槽和切斷等。車刀在結(jié)構(gòu)上可分為整體車刀、焊接裝配式車刀和機(jī)械夾固刀片的車刀。機(jī)械夾固刀片的車刀又可分為機(jī)床車刀和可轉(zhuǎn)位車刀。機(jī)械夾固車刀的切削性能穩(wěn)定,工人不必磨刀,所以在現(xiàn)代生產(chǎn)中應(yīng)用越來越多。
2孔加工刀具
孔加工刀具一般可分為兩大類:
一類是從實(shí)體材料上加工出孔的刀具,常用的有麻花鉆、中心鉆和深孔鉆等;
另一類是對(duì)工件上已有孔進(jìn)行再加工的刀具,常用的有擴(kuò)孔鉆、鉸刀及鏜刀等。
3銑刀
銑刀是一種應(yīng)用廣泛的多刃回轉(zhuǎn)刀具,其種類很多。按用途分有:
1)加工平面用的,如圓柱平面銑刀、端銑刀等;
2)加工溝槽用的,如立銑刀、T形刀和角度銑刀等;
3)加工成形表面用的,如凸半圓和凹半圓銑刀和加工其它復(fù)雜成形表面用的銑刀。銑削的生產(chǎn)率一般較高,加工表面粗糙度值較大。
4拉刀
拉刀是一種加工精度和切削效率都比較高的多齒刀具,廣泛應(yīng)用于大批量生產(chǎn)中,可加工各種內(nèi)、外表面。拉刀按所加工工件表面的不同,可分為各種內(nèi)拉刀和外拉刀兩類。使用拉刀加工時(shí),除了要根據(jù)工件材料選擇刀齒的前角、后角,根據(jù)工件加工表面的尺寸(如圓孔直徑)確定拉刀尺寸外,還需要確定兩個(gè)參數(shù):
(1)齒升角af[即前后兩刀齒(或齒組)的半徑或高度之差];
(2)齒距p[即相鄰兩刀齒之間的軸向距離]。
5螺紋刀具
螺紋可用切削法和滾壓法進(jìn)行加工。
6齒輪刀具
齒輪刀具是用于加工齒輪齒形的刀具。按刀具的工作原理,齒輪分為成形齒輪刀具和展成齒輪刀具。常用的成形齒輪刀具有盤形齒輪銑刀和指形齒輪刀具等。常用的展成齒輪刀具有插齒刀、齒輪滾刀和剃齒刀等。選用齒輪滾刀和插齒刀時(shí),應(yīng)注意以下幾點(diǎn):
(1)刀具基本參數(shù)(模數(shù)、齒形角、齒頂高系數(shù)等)應(yīng)與被加工齒輪相同。
(2)刀具精度等級(jí)應(yīng)與被加工齒輪要求的精度等級(jí)相當(dāng)。
(3)刀具旋向應(yīng)盡可能與被加工齒輪的旋向相同。滾切直齒輪時(shí),一般用左旋齒刀。
7自動(dòng)線與數(shù)控機(jī)床刀具
這類刀具的切削部分總的來說與一般刀具沒有多大區(qū)別不同情況,只是為了適應(yīng)數(shù)控機(jī)床和自動(dòng)線加工的特點(diǎn),對(duì)它們提出了更高的要求。
數(shù)控刀具已形成三大系統(tǒng):車削刀具系統(tǒng),鉆削刀具系統(tǒng)和鏜銑刀具系統(tǒng)。
(三)常用刀具種類和應(yīng)用
1.車刀
1
一般使用之車刀尖型式有下列幾種:
(1)粗車刀:主要是用來切削大量且多余部份使工作物直徑接近需要的尺寸。粗車時(shí)表面光度不重要,因此車刀尖可研磨成尖銳的刀峰,但是刀峰通常要有微小的圓度以避免斷裂。
(2)精車刀:此刀刃可用油石礪光,以便車出非常圓滑的表面光度,一般來說精車刀之圓鼻比粗車刀大。
(3)圓鼻車刀:可適用許多不同型式的工作是屬于常用車刀,磨平頂面時(shí)可左右車削也可用來車削黃銅。此車刀也可在肩角上形成圓弧面,也可當(dāng)精車刀來使用。
(4)切斷車刀:只用端部切削工作物,此車刀可用來切斷材料及車度溝槽。
(5)螺絲車刀(牙刀):用于車削螺桿或螺帽,依螺紋的形式分60度,或55度V型牙刀,29度梯形牙刀、方形牙刀。
(6)搪孔車刀:用以車削鉆過或鑄出的孔。達(dá)至光制尺寸或真直孔面為目的。
(7)側(cè)面車刀或側(cè)車刀:用來車削工作物端面,右側(cè)車刀通常用在精車軸的未端,左側(cè)車則用來精車肩部的左側(cè)面。
2
因工件之加工方式不同而采用不同的刀刃外形,一般可區(qū)分為:
(1)右手車刀:由右向左,車削工件外徑。
(2)左手車刀:由左向右,車削工件外徑。
(3)圓鼻車刀:刀刃為圓弧形,可以左右方向車削,適合圓角或曲面之車削。
(4)右側(cè)車刀:車削右側(cè)端面。
(5)左側(cè)車刀:車削左側(cè)端面。
(6)切斷刀:用于切斷或切槽。
(7)內(nèi)孔車刀:用于車削內(nèi)孔。
(8)外螺紋車刀:用于車削外螺紋。
(9)內(nèi)螺紋車刀:用于車削內(nèi)螺紋。
2.孔加工刀具
高溫合金
一、高溫合金的概念、原理和分類
高溫合金一般是指能在600~1200℃的高溫下抗癢化、抗腐蝕、抗蠕變,并能在較高的機(jī)械應(yīng)力效果下長(zhǎng)期作業(yè)的合金資料。
高溫合金強(qiáng)調(diào)的不是耐受溫度指標(biāo),耐受溫度比高溫合金高的資料有很多,比如難熔合金、陶瓷及碳碳復(fù)合資料等。高溫合金底子的特性在于必定溫度下所具有的高強(qiáng)度。以一般的修建用鋼材為例,它在室溫下強(qiáng)度很高,但在修建焚燒時(shí)強(qiáng)度會(huì)急劇下降,從而導(dǎo)致修建坍塌。高溫合金的長(zhǎng)處是,在600~1200℃的高溫下,它仍然能堅(jiān)持極高的強(qiáng)度和硬度以接受較高的載荷。因而俄羅斯將其稱為熱強(qiáng)合金,而歐美稱之為超合金(superalloy)。
一般鋼材含有十多種化學(xué)元素,而高溫合金一般含有超越30-40種元素,高溫合金之所以能在高溫下堅(jiān)持較高的強(qiáng)度和硬度首要原因在于這些元素在安排中發(fā)揮著強(qiáng)化金屬功能的效果。
高溫合金的分類有多種:1)按制造工藝分為變形高溫合金、鑄造高溫合金和粉末高溫冶金三類。2)按合金的首要元素分為鐵基高溫合金、鎳基高溫合金和鈷基高溫合金三類。3)按強(qiáng)化辦法分為固溶強(qiáng)化、時(shí)效強(qiáng)化、氧化物彌散強(qiáng)化和晶界強(qiáng)化等。
以工藝分類來看,變形高溫合金運(yùn)用規(guī)劃廣,占比達(dá)70%,其次是鑄造高溫合金,占比20%。以合金首要元素來看,鎳基高溫合金運(yùn)用規(guī)劃廣,占比達(dá)80%,其次為鎳-鐵基,占比14.3%,鈷基占比少,占比5.7%。
二、高溫合金展開進(jìn)程及概略
高溫合金早誕生于20世紀(jì)初期的美國(guó),被用作車站的防腐支架。從開端,高溫合金的研發(fā)進(jìn)入了高速展開時(shí)期,鎳基高溫合金、鈷基高溫合金、鐵基高溫合金紛紛研發(fā)成功,并大量運(yùn)用。現(xiàn)在鎳基高溫合金是現(xiàn)代航空發(fā)起機(jī)、航天器和火箭發(fā)起機(jī)以及艦船和工業(yè)燃?xì)廨啓C(jī)的要害熱端部件資料(如渦輪葉片、導(dǎo)向器葉片、渦輪盤、焚燒室等),也是核反應(yīng)堆、化工設(shè)備、煤轉(zhuǎn)化技能等方面需求的重要高溫結(jié)構(gòu)資料。
高溫合金的展開首要閱歷了幾個(gè)階段:二十世紀(jì)40時(shí)代以前提出概念,40-50時(shí)代實(shí)現(xiàn)在噴氣發(fā)起機(jī)的運(yùn)用,50-60時(shí)代在真空熔煉技能取得重大進(jìn)展,60-70時(shí)代會(huì)集在合金化方面,70時(shí)代后首要在工藝研討方面,定向凝結(jié)、單晶合金、粉末冶金、機(jī)械合金化和陶瓷過濾等新工藝成為高溫合金展開的首要?jiǎng)恿?,其間定向凝結(jié)工藝制備的單晶合金尤為重要,在航空發(fā)起機(jī)渦輪葉片中運(yùn)用尤為廣泛。二十世紀(jì)80時(shí)代以來,國(guó)內(nèi)外廣泛展開數(shù)值模仿研討,取得了重要進(jìn)展,并在此基礎(chǔ)上展開了顯微安排及冶金缺點(diǎn)猜測(cè)研討。
三、鎳基高溫合金
在整個(gè)高溫合金領(lǐng)域中,鎳基高溫合金占有特別重要的地位,與鐵基和鈷基合金比較,鎳基合金具有更好的高溫功能、良好的抗癢化和抗腐蝕功能。鎳基高溫合金是高溫合金中運(yùn)用廣、高溫強(qiáng)度蕞高的一類合金。其首要原因,一是鎳基合金中能夠溶解較多合金元素,且能堅(jiān)持較好的安排安穩(wěn)性;二是能夠構(gòu)成共格有序的A3B型金屬間化合物[Ni3(Al,Ti)]相作為強(qiáng)化相,使合金得到有用強(qiáng)化,獲得比鐵基高溫合金和鈷基高溫合金更高的高溫強(qiáng)度;三是含鉻的鎳基高溫合金具有比鐵基高溫合金更好的抗癢化和抗燃?xì)飧g才能。能夠說,鎳基高溫合金的展開決定了航空渦輪發(fā)起機(jī)的展開,也決定了航空工業(yè)的展開。選用定向凝結(jié)技能制備出的鎳基單晶合金,其運(yùn)用溫度已接近合金熔點(diǎn)的90%,成為今世先進(jìn)航空發(fā)起機(jī)熱端部件不行替代的重要結(jié)構(gòu)資料。
鎳基高溫合金含有十多種元素,增加合金元素對(duì)高溫合金的功能起要害的效果。以鑄造鎳基高溫合金為例,鑄造鎳基高溫合金以γ相為基體,增加鋁、鈦、鈮、鉭等構(gòu)成γ’相進(jìn)行強(qiáng)化,γ’相數(shù)量較多,有的合金高達(dá)60%;參加鈷元素能前進(jìn)γ’相溶解溫度,前進(jìn)合金的運(yùn)用溫度;鉬、鎢、鉻具有強(qiáng)化固溶體的效果,鉻、鉬、鉭還能構(gòu)成一系列對(duì)晶界發(fā)生強(qiáng)化效果的碳化物;鋁、鉻有助于抗癢化才能,但鉻下降γ’相的溶解度和高溫強(qiáng)度,因而鉻含量應(yīng)低些;鉿改進(jìn)合金中溫塑性和強(qiáng)度;為了強(qiáng)化晶界,增加適量的硼、鋯等元素。研討標(biāo)明,GMR235鑄態(tài)合金的含碳量為0.18%時(shí),高溫耐久壽數(shù)和抗拉強(qiáng)度蕞大,且具有較好的塑性,增加硼和鋯的合金耐久性明顯改進(jìn),合金的枝晶距離削減,碳化物的析出量削減且碳化物顆粒細(xì)化,從而改進(jìn)各方面功能。
鎳基高溫合金是20世紀(jì)30時(shí)代后期開端研發(fā)的。英國(guó)于1941年首先出產(chǎn)出鎳基高溫合金Nimonic75;為了前進(jìn)蠕變性又增加了鋁,研發(fā)出Nimonic80。美國(guó)于40時(shí)代中期,蘇聯(lián)于40時(shí)代后期,我國(guó)于50時(shí)代中期也研發(fā)出鎳基合金。
鎳基合金的展開包含兩個(gè)方面:合金成分的改進(jìn)和出產(chǎn)工藝的改造。50時(shí)代初,真空熔煉技能的展開,為煉制含高鋁和鈦的鎳基合金創(chuàng)造了條件。初期的鎳基合金大都是變形合金。50時(shí)代后期,因?yàn)闇u輪葉片作業(yè)溫度的前進(jìn),要求合金有更高的高溫溫度,可是合金的強(qiáng)度高了,就難以變形,乃至不能變形,于是選用熔模精細(xì)鑄造工藝,展開出一系列具有良好高溫強(qiáng)度的鑄造合金。60時(shí)代中期展開出功能更好的定向結(jié)晶和單晶高溫合金以及粉末冶金高溫合金。為了滿意艦船和工業(yè)燃?xì)廨啓C(jī)的需求,60時(shí)代以來還展開出一批抗熱腐蝕功能較好、安排安穩(wěn)的高鉻鎳基合金。在從40時(shí)代初到70時(shí)代末大約40年的時(shí)間內(nèi),鎳基合金的作業(yè)溫度從700℃前進(jìn)到1100℃,平均每年前進(jìn)10°C左右。
鎳基高溫合金按照制造工藝,可分為變形高溫合金、鑄造高溫合金、粉末冶金高溫合金。
3.1 變形高溫合金
變形高溫合金是高溫合金中運(yùn)用廣的一類,占比到達(dá)70%。變形高溫合金首要選用常規(guī)的鍛、軋和揉捏等冷、熱變形手段加工成材。我國(guó)鎳基變形高溫合金以拼音字母GH加序號(hào)表明,如GH4169、GH141等。
變形高溫合金塑性較低,變形抗力大,運(yùn)用一般的熱加工手段變形有必定困難,因而需求采納鋼錠直接軋制、鋼錠包套直接軋制和包套墩餅等新工藝來加工,也選用加鎂微合金化和彎曲晶界熱處理工藝來前進(jìn)塑性。
變形高溫合金在航空發(fā)起機(jī)中至今仍然是首要用材。其間GH4169在我國(guó)航空發(fā)起機(jī)中已得到廣泛運(yùn)用,被稱為高溫合金中的。其材質(zhì)水平和加工工藝水平近年來得到明顯前進(jìn)。GH4169合金的冶金產(chǎn)品有不同標(biāo)準(zhǔn)的鍛棒、熱軋棒、冷拉棒、板、帶、絲、管和鍛件,制造的零件有各類盤、轉(zhuǎn)子、環(huán)、機(jī)匣、軸、緊固件、彈性元件、阻尼元件等。
3.2 鑄造高溫合金
跟著運(yùn)用溫度和強(qiáng)度的前進(jìn),高溫合金的合金化程度越來越高,熱加工成形越來越困難,必須選用鑄造工藝進(jìn)行出產(chǎn)。另外,選用冷卻技能的空心葉片的內(nèi)部雜亂型腔,只能選用精細(xì)鑄造工藝才能出產(chǎn),因而鎳基鑄造高溫合金在實(shí)際出產(chǎn)運(yùn)用中不行缺少。鑄造高溫合金運(yùn)用也較為廣泛,占比約20%。國(guó)內(nèi)的鑄造高溫合金以“K”加序號(hào)表明,如K1、K2等。
按結(jié)晶辦法,鑄造高溫合金又能夠分為多晶鑄造高溫合金、定向凝結(jié)鑄造高溫合金、定向共晶鑄造高溫合金和單晶鑄造高溫合金等4種類型。鑄造高溫合金的特點(diǎn)是:1)具有更寬的成分規(guī)劃。因?yàn)椴挥媒y(tǒng)籌變形加工功能,合金的規(guī)劃能夠會(huì)集考慮優(yōu)化其運(yùn)用功能。2)具有更廣闊的運(yùn)用領(lǐng)域。因?yàn)殍T造辦法具有的特別長(zhǎng)處,可依據(jù)零件的運(yùn)用需求,規(guī)劃、制造出近終型或無余量的具有任意雜亂結(jié)構(gòu)和形狀的高溫合金鑄件。
刃口鈍化的刀具切削刃描摹上的微觀缺陷大幅縮減,刃口崩壞的幾率大幅下降,能夠延常刀具使用壽命50%-400%。因此,開展刀具刃口鈍化的研討對(duì)進(jìn)步我國(guó)刀具產(chǎn)品的質(zhì)量具有十分重要的含義。現(xiàn)在,國(guó)外的刀具制造廠已廣泛選用刃口鈍化技能,從國(guó)外引入的數(shù)控機(jī)床或者生產(chǎn)線所使用的刀具,其刃口已全部經(jīng)過鈍化處理,不只進(jìn)步了工件外表質(zhì)量,下降了刀具成本,一起也帶來了巨大的經(jīng)濟(jì)效益。刀具鈍化辦法有振蕩鈍化、磨粒尼龍刷法鈍化、磁化法鈍化和立式旋轉(zhuǎn)鈍化等,立式旋轉(zhuǎn)鈍化進(jìn)程實(shí)際上是渙散固體顆粒對(duì)刀具刃口效果的進(jìn)程。
含磨粒的刀具刃口鈍化法具有重復(fù)性好、質(zhì)量高和成本低一級(jí)特色,是現(xiàn)在首要選用的刀具刃口鈍化辦法,通過刀具和磨粒的相對(duì)運(yùn)動(dòng)實(shí)現(xiàn)刃口鈍化,磨粒多選用金剛石、CBN和碳化硅顆粒等。現(xiàn)在,關(guān)于磨粒效果機(jī)理研討的比較少,首要有沖擊單顆磨粒、沖擊多磨粒磨損、刀具和切屑間存在磨粒、磨料水射流和半固著磨粒等,重點(diǎn)研討磨粒類型、磨粒尺寸和沖擊速度對(duì)外表的影響規(guī)則,而關(guān)于渙散磨粒對(duì)工件外表效果機(jī)理的研討更少。楊成虎研討了多粒子重復(fù)沖擊關(guān)于Cr12鋼的沖蝕磨損,選用實(shí)驗(yàn)與有限元模仿相結(jié)合的辦法驗(yàn)證了有限元模型能夠?qū)嵲谟行У啬7鲁鰶_蝕磨損的實(shí)際進(jìn)程。利用非線性ABAQUS有限元軟件研討了磨粒沖蝕速率、沖蝕角和磨粒粒徑對(duì)刀圈資料(H13鋼)沖蝕磨損行為及殘余應(yīng)力的影響規(guī)則。張偉等運(yùn)用ABAQUS軟件樹立了塑性資料微切削進(jìn)程的有限元模型,研討了磨粒沖蝕角度以及沖蝕速度對(duì)磨損率的影響,斷定了微切削模型的適用沖蝕角范圍。
為了取得合適的鈍化刃口形狀,進(jìn)步切削進(jìn)程的穩(wěn)定性,需求研討渙散固體磨粒對(duì)刀具刃口的鈍化機(jī)理。本文選用ABAQUS有限元軟件樹立了單磨粒和多磨粒對(duì)刀具刃口效果的防真模型,研討了單磨粒和多磨粒對(duì)刃口效果的能量、刃口形變、位移和磨粒速度改變等的影響規(guī)則,關(guān)于從微觀角度知道磨粒鈍化效果具有一定價(jià)值,為研討刀具刃口鈍化機(jī)理提供依據(jù)。
1 單磨粒鈍化刃口防真模型的樹立
依據(jù)立式旋轉(zhuǎn)鈍化法的基本特色,刀具在渙散固體磨粒中進(jìn)行兩級(jí)行星運(yùn)動(dòng),刀具刃口與渙散固體磨粒不斷進(jìn)行磕碰沖擊,使得刀具刃口鈍化。刀具沿著一定的軌跡進(jìn)行運(yùn)動(dòng),而渙散固體磨粒的運(yùn)動(dòng)規(guī)則相對(duì)隨機(jī)。因此,渙散固體磨粒對(duì)刀具刃口的鈍化進(jìn)程是十分復(fù)雜的。
作為非線性有限元處理工具,ABAQUS在處理復(fù)雜問題和模仿高度非線性問題上有極大優(yōu)勢(shì)。選用ABAQUS軟件樹立磨粒對(duì)刀具刃口鈍化的防真模型。
①刀具鈍化模型的簡(jiǎn)化:因?yàn)槟チO嚓P(guān)于刀具刃口要小得多,能夠?qū)⒌毒呷锌诳醋鳠o限大,底端固定不動(dòng),粒子向刀具刃口沖擊。
②磨粒:磨粒選用80目碳化硅,顆粒形狀設(shè)為球形。
③刀具:選用硬質(zhì)合金刀具,刀具刃口尺寸設(shè)為0.5mm×0.25mm×0.1mm。
④網(wǎng)格劃分:將刀具刃口與磨粒觸摸部分的網(wǎng)格區(qū)域劃分得略細(xì),磨粒的母線布置種子數(shù)目為10,挑選顯式線性三維應(yīng)力單元C3D4。刀具刃口種子數(shù)目分別設(shè)為10和25,磨粒單元形狀為Tet(四面體),完成網(wǎng)格劃分。
⑤防真設(shè)置:觸摸屬性為Contact,沖擊速度設(shè)置為100m/s,核算剖析步時(shí)刻為5E-5s,設(shè)置20個(gè)剖析步,選用job模塊進(jìn)行求解。
2 單磨粒鈍化刃口防真結(jié)果
(1)刀具刃口應(yīng)力改變規(guī)則
單磨粒對(duì)刀具刃口效果的應(yīng)力矢量云圖見圖1。由圖可知,碳化硅磨粒在沖擊刀具刃口時(shí),刀具刃口外表會(huì)發(fā)生微小的變形,刃口遭到的應(yīng)力巨細(xì)在觸摸區(qū)以圓弧狀向四周擴(kuò)展,一起應(yīng)力以觸摸點(diǎn)為中心向四周逐步衰減。刃口被沖擊的外表略微下凹,就像一個(gè)小球在地上砸出了一個(gè)坑相同。
圖1 單磨粒對(duì)刀具刃口效果的應(yīng)力散布
(2)刀具刃口的沖擊區(qū)域與應(yīng)力的關(guān)系
刀具刃口的沖擊區(qū)域與應(yīng)力的關(guān)系見圖2。在刀具刃口沖擊區(qū)域內(nèi),越靠近磨粒沖擊點(diǎn)中心,刀具刃口應(yīng)力越大;越遠(yuǎn)離磨粒與刃口的沖擊區(qū)域,刀具刃口所受的應(yīng)力越小。
(3)刀具刃口的位移改變規(guī)則
單磨粒對(duì)刀具刃口效果的位移曲線見圖3。在刀具刃口鈍化進(jìn)程中,碳化硅磨粒與刃口的沖擊十分時(shí)間短。當(dāng)碳化硅磨粒從0時(shí)刻開端運(yùn)動(dòng)且當(dāng)時(shí)刻到達(dá)7.5E-06s時(shí),碳化硅磨粒的位移到達(dá)蕞大。爾后,磨粒開端反彈。
圖2 到效果點(diǎn)中心的間隔所對(duì)應(yīng)的應(yīng)力關(guān)系
圖3 刀具刃口的位移改變規(guī)則
(4)單磨粒速度改變規(guī)則
磨粒在與刃口觸摸時(shí),與刃口之間的效果速度逐步減小,隨后反彈(見圖4)。
圖4 磨粒速度改變規(guī)則
3 多磨粒防真模型的樹立及結(jié)果
選用三顆磨粒重復(fù)沖擊,研討多磨粒對(duì)刀具刃口的鈍化。邊界條件與資料參數(shù)及邊界的界定與單磨粒模型共同。沖擊速度為300m/s,多磨粒對(duì)刀具刃口鈍化的防真模型見圖5。
圖5 多磨粒對(duì)刀具刃口效果的防真模型
(1)刀具刃口的應(yīng)力散布
圖6為地一顆磨粒對(duì)刀具刃口沖擊的應(yīng)力云圖。由圖可知,在地一剖析步t=2.5003E-06s時(shí),刀具刃口無太大改變,受磨粒沖擊的中心遭到的應(yīng)力蕞大,蕞大應(yīng)力值為2238MP;當(dāng)?shù)诙w磨粒對(duì)同一位置進(jìn)行沖擊后,刀具刃口所受應(yīng)力區(qū)域顯著增大,所產(chǎn)生的蕞大應(yīng)力值為2341Mpa;當(dāng)?shù)谌w磨粒沖擊刀具刃口時(shí),刀具刃口遭到的應(yīng)力效果區(qū)域進(jìn)一步增大,蕞大應(yīng)力值為2440Mpa,較前兩次沖擊有所進(jìn)步。
圖6 地一顆磨粒沖擊刀具刃口的應(yīng)力散布
(2)磨粒速度改變規(guī)則
多磨粒沖擊刀具刃口的速度改變規(guī)則見圖7。在0s時(shí),地一顆磨粒開端與刀具刃口磕碰,隨后磨粒速度開端下降,直至越過零點(diǎn)成為負(fù)值。磨粒速度為負(fù)是因?yàn)槟チ0l(fā)生了回彈,磨粒對(duì)刀具刃口產(chǎn)生磨損。在1.0E-5s、2.0E-5s時(shí),第二顆磨粒、第三顆磨粒分別與刀具刃口效果,效果方式和地一顆磨粒相同。
圖7 三顆碳化硅磨粒速度改變規(guī)則
刀具刃口在三顆磨粒沖擊下的位移曲線見圖8。地一顆碳化硅磨粒在對(duì)刀具刃口沖擊后會(huì)構(gòu)成一個(gè)的沖蝕坑,接著第二顆、第三顆磨粒重復(fù)沖擊,沖蝕坑不斷增大,多磨粒的沖擊會(huì)使沖蝕坑越來越大。
圖8 刀具刃口遭到重復(fù)沖擊的位移改變
(4)多磨粒對(duì)刀具刃口效果的能量改變規(guī)則
刀具刃口鈍化的進(jìn)程也是能量交換的進(jìn)程。因?yàn)榈毒呷锌谂c渙散固體磨粒不斷地沖擊磕碰,在鈍化進(jìn)程中發(fā)生了磨粒動(dòng)能和刀具刃口內(nèi)能的交換,其能量改變見圖9。
圖9 刀具刃口鈍化的能量改變
由圖9可知,碳化硅磨粒在觸摸刀具刃口后速度開端下降,約在2E-05s時(shí)到達(dá)蕞低。磨粒的動(dòng)能因?yàn)樗俣鹊臏p小而減小,大約在2E-05s時(shí)到達(dá)蕞低。一起,刀具刃口內(nèi)能因?yàn)槟チ5臎_擊呈現(xiàn)出接連上升趨勢(shì),二者能量曲線基本對(duì)稱,磨粒所消耗的動(dòng)能基本轉(zhuǎn)化成為刀具刃口內(nèi)能,使得刀具刃口進(jìn)行鈍化。
小結(jié)
選用ABAQUS有限元剖析軟件樹立了磨粒對(duì)刀具刃口沖擊的防真模型,研討了磨粒沖擊刀具刃口時(shí)磨粒速度、刃口應(yīng)力、刃口位移和能量等的改變規(guī)則。首要定論如下:
(1)當(dāng)單磨粒對(duì)刀具刃口進(jìn)行鈍化時(shí),刀具刃口的應(yīng)力在沖擊區(qū)域以圓弧狀向四周擴(kuò)展。碳化硅磨粒與刃口的沖擊十分時(shí)間短,磨粒從零時(shí)刻開端運(yùn)動(dòng),當(dāng)時(shí)刻到達(dá)7.5E-06s時(shí),碳化硅磨粒的位移到達(dá)蕞大,爾后,磨粒開端反彈。
(2)當(dāng)多碳化硅磨粒對(duì)刀具刃口進(jìn)行不斷沖擊時(shí),受力區(qū)域不斷增大,刀具刃口所受應(yīng)力增大,沖蝕坑不斷增大。