【廣告】
人工智能控制器
也有一些的文章論述運(yùn)用模糊邏輯控制感應(yīng)電機(jī)的磁通和力矩。它的輸入標(biāo)定因子是變化的。實(shí)驗(yàn)結(jié)果也驗(yàn)證了所提方案的有效性。該系統(tǒng)中模糊速度控制器與常規(guī)的PI速度控制器和CRPWM塑變器一起使用,它往往用來補(bǔ)償可能的慣性和負(fù)載轉(zhuǎn)矩的擾動(dòng)。神經(jīng)網(wǎng)絡(luò)的應(yīng)用 現(xiàn)如今,有大量文章討論神經(jīng)網(wǎng)絡(luò)在交流電機(jī)和驅(qū)動(dòng)系統(tǒng)的條件監(jiān)測和診斷中的運(yùn)用。
人工智能技術(shù)控制器
誤差反向傳播技術(shù)性是雙層前聵ANN常見的學(xué)技術(shù)。假如互聯(lián)網(wǎng)有充足多的隱藏層和隱藏結(jié)點(diǎn)及其適合的激勵(lì)函數(shù),雙層ANN只有完成必須的投射,沒有立即的技術(shù)性挑選佳隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),一般用嘗試法處理這個(gè)問題,反向傳播訓(xùn)煉優(yōu)化算法是基本上的更快降低法,輸出結(jié)點(diǎn)的誤差意見反饋回互聯(lián)網(wǎng),用以權(quán)重值調(diào)節(jié),檢索佳。
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫和隸屬函數(shù)在模糊化和反模糊化過程中能夠自動(dòng)地實(shí)時(shí)確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。