臭氧超溶解釋氣及微納米分散的裝置,包括臭氧發(fā)生器,混合泵,反應塔和儲液槽,所述臭氧發(fā)生器和儲液槽均連接至混合泵的輸入端,所述混合泵的輸出端連接反應塔的輸入端,所述混合泵包括電機和泵體,所述電機的輸出軸連接泵體,所述泵體的上端一側設氣相進口和液相進口,所述泵體的上端另一側設混合相出口,所述泵體的下端設氣液分散梁和設于氣液分散梁內的葉輪;本發(fā)明提供的裝置,在臭氧氧化技術上常使用微泡形式加以強化,臭氧微泡化大大提高了氣液接觸面積,有效的提高了其傳質效率,且微泡化臭氧在微泡收縮瞬間將產生羥基自由基,提高了體系氧化能力,從而達到廢水中有機污染物降解的目的.

微納米氣泡技術
納米氣泡技術不只是一個技術,也存在理論的問題,過去許多年理論上認為納米氣泡不可能在溶液中長時間存在,因為按照傳統(tǒng)理論,氣泡體積越小,因為表面張力造成的內部壓力越大,這種壓力計算值可以達到非常巨大,而根據氣體溶解亨利定律,壓力越大溶解量越大,溶解速度越快,因此隨著氣泡體積縮小,氣泡的壽命會指數(shù)下降,但是實際情況并不是這樣,納米氣泡能在溶液中長時間存在,給這種技術的應用提供了重要支持。但是氣泡長時間存在的理論解釋仍然不完善。
納米氣泡本質上是一種氣體溶解技術,不僅能提高溶解速度,也能有效提高氣體的表觀溶解度。這正是氣體生物學效應的重要基礎。因此納米氣泡技術與氫氣生物學簡直就是珠聯(lián)璧合。從事氫氣醫(yī)學技術開發(fā)的學者必須了解和掌握這種

微納米技術氣泡的特點
1.比表面積大
氣泡的容積和面積的關聯(lián)能夠根據公式計算表明。氣泡的體積公式為V=4π/3r3,氣泡的表面積公式為A=4πr2,兩公式計算合拼可獲得A=3V/r,即V總=n·A=3V總/r。換句話說,在總容積不會改變(V不會改變)的狀況下,氣泡總的面積與單獨氣泡的直徑反比。依據公式計算,10μm的氣泡與1毫米的氣泡相較為,在一定容積下前面一種的比表面積理論上是后面一種的100倍。氣體和水的觸碰總面積就提升了100倍,各種各樣反應速率也提升了100倍。
2.升高速度比較慢
依據斯托克斯基本定律,氣泡在水中的升高速度氣泡直徑的平方米正相關。氣泡直徑越小則氣泡的升高速率變慢。從氣泡升高速度氣泡直徑得知,氣泡直徑1毫米的氣泡在水中升高的速率為6m/min,而直徑10μm的氣泡在水中的升高速率為3毫米/min,后面一種是前面一種的1/2000。假如充分考慮比表面積的提升,微納米技術氣泡的溶解工作能力比一般氣體提升二十萬倍。
3.本身增加溶解
水里的氣泡四周存在汽液頁面,而汽液頁面的存有促使氣泡會遭受水的界面張力的功效。針對具備球型頁面的氣泡,界面張力能縮小氣泡內的汽體,進而使大量的氣泡內的汽體溶解到水里。
依據楊-拉普拉斯方程組,
?P=2σ/r,?P代表工作壓力升高的標值,σ代表界面張力,r代表氣泡半經。直徑在0.1毫米之上的氣泡所受工作壓力不大能夠忽視,而直徑10μm的細微氣泡
會遭受0.3個大氣壓力的工作壓力,而直徑1μm的氣泡會受達到3個大氣壓力的工作壓力。微納米技術氣泡在水中的溶解是一個氣泡慢慢變小的全過程,工作壓力的升高會提升汽體的溶解速率,隨著著比表面積的提升,氣泡變小的速率能變的變的越來越快,進而溶解到水里,理論上氣泡將要消退時的受到工作壓力為無窮大。
傳質
氣液傳質是許多化學和生化工藝的限速步驟。研究表明,氣液傳質速率和效率與氣泡直徑成反比,微氣泡直徑,在傳質過程中比傳統(tǒng)氣泡具有明顯優(yōu)勢。當氣泡直徑較小時,微氣泡界面處的表面張力對氣泡特性的影響表現(xiàn)得較為顯著。這時表面張力對內部氣體產生了壓縮作用,使得微氣泡在上升過程中不斷收縮并表現(xiàn)出自身增壓效應。從理論上看,隨著氣泡直徑的縮小,氣泡界面的比表面積也隨之增大,終由于自身增壓效應可導致內部氣壓增大到大。因此,微氣泡在其體積收縮過程中,由于比表面積及內部氣壓地不斷增大,使得更多的氣體穿過氣泡界面溶解到水中,且隨著氣泡直徑的減小表面張力的作用效果也越來越明顯,終內部壓力達到一定極限值而導致氣泡界面消失。因此,微氣泡在收縮過程中的這種自身增壓特性,可使氣液 界面處傳質效率得到持續(xù)增強,并且這種特性使得微氣泡即使在水體中氣體含量達到過飽和條件時,仍可繼續(xù)進體的傳質過程并保持的傳質效率。