【廣告】
由于數控機床的主軸轉速及范圍遠遠高于普通機床,而且主軸輸出功率較大,因此與傳統(tǒng)加工方法相比,對數控加工刀具的提出了更高的要求,包括精度高、強度大、剛性好、耐用度高,而且要求尺寸穩(wěn)定,安裝調整方便。這就要求刀具的結構合理、幾何參數標準化、系列化。數控刀具是提高加工效率的先決條件之一,它的選用取決于被加工零件的幾何形狀、材料狀態(tài)、夾具和機床選用刀具的剛性。
數控機床選擇刀具應考慮以下方面:
(1)根據零件材料的切削性能選擇刀具。如車或銑高強度鋼、鈦合金、不銹鋼零件,建議選擇耐磨性較好的可轉位硬質合金刀具。
(2)根據零件的加工階段選擇刀具。即粗加工階段以去除余量為主,應選擇剛性較好、精度較低的刀具,半精加工、精加工階段以保證零件的加工精度和產品質量為主,應選擇耐用度高、精度較高的刀具,粗加工階段所用刀具的精度、而精加工階段所用刀具的精度。如果粗、精加工選擇相同的刀具,建議粗加工時選用精加工淘汰下來的刀具,因為精加工淘汰的刀具磨損情況大多為刃部輕微磨損,涂層磨損修光,繼續(xù)使用會影響精加工的加工質量,但對粗加工的影響較小。
(3)根據加工區(qū)域的特點選擇刀具和幾何參數。在零件結構允許的情況下應選用大直徑、長徑比值小的刀具;切削薄壁、超薄壁零件的過中心銑刀端刃應有足夠的向心角,以減少刀具和切削部位的切削力。加工鋁、銅等較軟材料零件時應選擇前角稍大一些的立銑刀,齒數也不要超過4齒。
選取刀具時,要使刀具的尺寸與被加工工件的表面尺寸相適應。生產中,平面零件周邊輪廓的加工,常采用立銑刀;銑削平面時,應選硬質合金刀片銑刀;加工凸臺、凹槽時,選高速鋼立銑刀;加工毛坯表面或粗加工孔時,可選取鑲硬質合金刀片的玉米銑刀;對一些立體型面和變斜角輪廓外形的加工,常采用球頭銑刀、環(huán)形銑刀、錐形銑刀和盤形銑刀。
在進行自由曲面加工時,由于球頭刀具的端部切削速度為零,因此,為保證加工精度,切削行距一般很小,故球頭銑刀適用于曲面的精加工。而端銑刀無論是在表面加工質量上還是在加工效率上都遠遠優(yōu)于球頭銑刀,因此,在確保零件加工不過切的前提下,粗加工和半精加工曲面時,盡量選擇端銑刀。另外,刀具的耐用度和精度與刀具價格關系極大,必須引起注意的是,在大多數情況下,選擇好的刀具雖然增加了刀具成本,但由此帶來的加工質量和加工效率的提高,則可以使整個加工成本大大降低。
在加工中心上,所有刀具全都預先裝在刀庫里,通過數控程序的選刀和換刀指令進行相應的換刀動作。必須選用適合機床刀具系統(tǒng)規(guī)格的相應標準刀柄,以便數控加工用刀具能夠迅速、準確地安裝到機床主軸上或返回刀庫。編程人員應能夠了解機床所用刀柄的結構尺寸、調整方法以及調整范圍等方面的內容,以保證在編程時確定刀具的徑向和軸向尺寸,合理安排刀具的排列順序。
Inconel 718特性及應用領域概述:
該合金在-253~700℃溫度范圍內具有良好的綜合性能,650℃以下的屈服強度居變形高溫合金的首位,并具有良好的、輻射、氧化、耐腐蝕性能,以及良好的加工性能、焊接性能良好。能夠制造各種形狀復雜的零部件,在宇航、核能、石油工業(yè)及擠壓模具中,在上述溫度范圍內獲得了極為廣泛的應用。
Inconel 718相近牌號:
中國
GB/T 14992-2005
GH4169(原GH169)
美國
SPECIAL metaLS
INCONEL? ALLOY 718
ASTM B637
UNS N07718
歐洲
EN 10088-1
NiCr19Fe19Nb5
2.4668
Inconel 718 化學成份(百分比%):
牌號
N07718
GH4169
C
≤0.08
0.02~0.08
Si
≤0.35
Mn
P
≤0.015
S
Cr
17.00~21.00
Ni
50.00~55.00
Mo
2.80~3.30
Co
≤1.00
Nb Ta
4.75~5.50
4.70~5.50
Nb:4.75~5.50
Al
0.20~0.80
0.30~0.70
Ti
0.65~1.15
0.60~1.20
B
≤0.006
0.002~0.006
Mg
—
≤0.010
Cu
≤0.30
Fe
余量
Inconel 718物理性能:
密度
g/cm3
熔點
℃
熱導率
λ/(W/m?℃)
比熱容
J/kg?℃
彈性模量
GPa
8.24
1260
1320
14.7(100℃)
435
199.9
剪切模量
電阻率
μΩ?m
泊松比
線膨脹系數
a/10-6℃-1
77.2
1.15
0.3
11.8(20~100℃)
Inconel 718力學性能:(在20℃檢測機械性能的小值)
熱處理方式
拉強度
σb/MPa
屈服強度
σp0.2/MPa
延伸率
σ5 /%
布氏硬度
HBS
固溶處理
965
550
30
≥363
Inconel 718生產執(zhí)行標準:
標準
棒材
鍛件
板(帶)材
絲材
管材
ASTM
ASTM B670
ASTM B906
AMS
AMS 5662
AMS 5663
AMS 5664
AMS 5596
AMS 5597
5832
AMS 5589
AMS 5590
ASME
ASME SB637
Inconel 718 金相組織結構:
該合金標準熱處理狀態(tài)的組織由γ基體γ'、γ"、δ、NbC相組成。
Inconel 718工藝性能與要求:
1、因Inconel718合金中鈮含量高,合金中的鈮偏析程度與治金工藝直接有關。
2、為避免鋼錠中的元素偏析過重,采用的鋼錠直徑不大于508mm。
3、經均勻化處理的合金具有良好的熱加工性能,鋼錠的開坯加熱溫度不得超過1120℃。
4、該合金的晶粒度平均尺寸與鍛件的變形程度、終鍛溫度密切相關。
5、合金具有滿意的焊接性能,可用弧焊、電子束焊、縫焊、點焊等方法進行焊接。
6、合金不同的固溶處理和時效處理工藝會得到不同的材料性能。由于γ"相的擴散速率較低,所以通過長時間的時效處理能使Inconel718合金獲得佳的機械性能。
在批量加工如圖1所示的高溫合金球形軸承內球面時,原編制工藝道路為:粗加工→去應力→精車內球面→內球面開安裝槽→探傷→查驗→油封。
為驗證工藝,實驗選用如圖2所示高速鋼尖刀(假定刀尖圓弧半徑為零),前角為0o,刃傾角為0o,調整刀尖與車床主軸反轉中心線等高,在新購精細數控車床上編程精車3件45鋼制內球面φ19.15 0.0130 mm。
由于通用內徑量具無法實施在線丈量內球面φ19.15 0.0130 mm,所以在車床上選用改制專用測具(見圖3)檢測,直徑合格,經三坐標丈量機復檢,直徑合格,球面概括度差錯為0.005mm(小于直徑公役一半),合格。
但將零件材料改為高溫合金GH605,刀具改為YW1硬質合金尖刀后,用與高速鋼尖刀同樣的切削條件試車3件,經三坐標查驗全部不合格,原因是球面概括度差錯為0.03~0.05mm,經仔細觀察發(fā)現刀尖已磨損,且編程時沒有選用刀尖圓弧半徑補償程序。為此,改用如圖4所示SANDEVIK菱形可轉位機夾硬質合金刀具VCMW070204加工,刀尖圓弧半徑為rε=0.4mm,前角為0o,刃傾角為0o,調整刀尖與車床主軸中心線等高,選用刀尖圓弧半徑補償程序編程,加工了3件,經三坐標丈量查驗,3件全部不合格,原因是球面概括度差錯為0.015~0.02mm。至此,證明原工藝是不現實的。為了、經濟批量加工,改用了如下工藝道路:粗加工→去應力→精車內球面→內球面開裝配槽→用外球面形狀研磨具研磨內球面達圖樣要求→探傷→查驗→油封。工藝改進后已成功加工出一批合格產品。
2.精車內球面概括度超差問題
早在數控車床沒有普及的時代,用成型車刀精車之后再研磨的工藝辦法成功地加工出如圖5所示的球面上色量規(guī)(其技術要求是:環(huán)規(guī)按塞規(guī)上色修合,上色面積100%)?,F在數控車床替代了一般車床,數字程序替代了原來成型車刀,卻沒有加工出圖1所示的零件?,F剖析如下:
(1)精細球面加工工藝基礎。精細球面能夠看作是精細半圓(見圖6)繞經過該半圓圓心的剖分線反轉一周構成的反轉體。
在一般車床上用圓弧構成型樣板刀加工時(見圖7),樣板刀圓弧半徑是所車球的半徑,樣板刀圓弧刃的圓心有必要準確調整到車床主軸反轉軸線上,且圓弧刃地點平面與車床主軸反轉中心線等高共面,才干車出精細圓球面。為了完成以上條件,照顧到加工對刀便利,通常調整圓弧樣板切削刃安裝高度,使圓弧刃地點平面與車床主軸反轉軸線等高(共面),再經過車削丈量車出球面直徑,確保圓弧切削刃圓心坐落車床主軸反轉中心線上。
當圓弧刃地點平面與車床主軸反轉中心線共面但圓弧刃圓心與車床反轉中心間隔不為零時,車出的球面就不圓,而是橢球(見圖8)。
當圓弧刃平面平行于車床主軸反轉中心線,但高于或低于車床反轉軸線(即不共面)時,只要直徑大于所車球面的水平截面圓直徑,與圓弧刃構成的圓位置重合時,才有或許車成圓球,但此刻所車球面直徑已大于要求直徑(見圖9)。
當圓弧構成型切削刃或數控刀尖車出的軌道圓?。ㄒ韵潞喎Q母線圓?。┑攸c平面平行于車床主軸反轉中心線,但高于或低于車床主軸反轉中心線(以下簡稱車床軸線)時,即便母線圓弧半徑很準確且其圓心位置也準確坐落包括車床軸線的鉛垂面內,假定圖樣要求球面半徑為R,母線圓弧地點平面與車床軸線間隔為H,則車出的球面半徑為(R2 H2)0.5mm,若為了確保球面半徑R持續(xù)進刀,則車成橢球(見圖10)。
總歸,有必要確保母線圓弧半徑和母線圓弧圓心準確調整到車床軸線上,且母線圓弧與車床軸線等高共面,才干車出預訂半徑的精細圓球,三者缺一不可。
(2)數控車床加工精細內球面。首要調整車刀安裝高度使刀尖與數控車床軸線等高,當運用刀尖圓弧半徑為零(假定理想刀尖)的車刀編程時,使刀尖走過的圓弧軌道半徑等于球面半徑;當運用刀尖圓弧半徑不等于零的圓弧刀尖車刀加工時,運用刀尖圓弧半徑補償程序編程。對不具備刀尖圓弧半徑主動補償功用的經濟型數控車床,假定圖樣要求球面半徑為R,刀尖圓弧半徑為rε,可選用刀尖圓弧圓心軌道編程,刀尖圓弧圓心編程半徑為(R-rε)。這樣切削球面時,圓弧切削刃逐點參加切削,母線圓弧半徑R相當于半徑為(R-rε)的圓等距rε后得出的(見圖11)。
當刀尖與數控車床軸線不等高時,假如按母線圓弧圓心和車床軸線坐落同一鉛垂面準則進刀,在不考慮其他原因的狀況下車出的球面直徑差錯由公式(1)核算:
ΔR=(R2 H2)0.5-R (1)
式中,R為所車球面半徑,H為刀尖走過的母線圓弧平面高于或低于車床軸線的間隔。當R=19.15÷2=9.575(mm),ΔR=0.013÷2=0.006 5(mm)。由公式(1)核算出H=0.35mm。也就是說,當刀尖高于或低于車床軸線0.35mm時,車出的球面就超出公役帶。在批量生產高溫合金零件時,遍及運用可轉位不重磨機夾刀片,經查閱SANDEVIK刀具手冊,精度等級為M的刀片厚度公役為±0.13mm,假定地一次將切削刃調整到與車床軸線等高,那么,當替換刀片時,如不調整刀尖高度,壞的狀況是刀尖與車床軸線間隔為0.26mm,其小于0.35mm,可見獨自由刀尖高度引起的球面差錯不會超出公役帶。
當刀尖高度與車床軸線等高時,在不考慮機床進給空隙影響時,刀尖圓弧半徑差錯是影響球面加工的直接要素??隙ǖ募獾妒遣淮嬖诘模俣ǖ都鈭A弧半徑為零的車刀耐用度很低,不適合批量加工高溫合金零件,選用刀尖圓弧半徑補償程序編程時,有必要輸入刀尖圓弧半徑數值,經查閱SANDEVIK刀具手冊,仿形加工用圓弧切削刀具刀尖圓弧直徑2rε公役為±0.02mm。而SANDEVIK刀片VCMW070204,刀尖圓弧半徑為rε=0.4mm,沒有給出公役,查國標GB2078—87,刀片VCMW070204刀尖圓弧半徑為rε=0.4±0.10mm,數控系統(tǒng)主動將理想刀尖圓弧半徑補償到母線圓弧加工中,刀尖圓弧半徑差錯以1﹕1倍率影響到加工球面半徑差錯。經過作圖與理論核算,能夠算出,在圖1所示軸向長度14mm范圍內,包括在公役為0.006 5mm圓度公役帶內理想圓弧半徑為R=9.575±0.013 9mm,當不考慮其他要素影響,按刀尖圓弧圓心R=(9.575-0.4)mm編程時,刀尖圓弧半徑有必要控制在rε=0.4±0.013 9mm。由此可推理,尖刀加工,刀尖磨損后刀尖圓角半徑有必要是rε≤0.013 9mm才有或許車出符合公役要求的內球面,當刀尖磨損至rε>0.013 9mm時,將車出Z向偏長的橢圓形球面;假如運用圓弧刀尖刀具加工,刀具半徑有必要控制在rε=0.4±0.013 9mm,而刀片VCMW070204的刀尖rε=0.4±0.10mm,不符合球面的精度加工要求??梢姡氉杂傻都鈭A弧半徑引起的球面加工直徑差錯已超出球形軸承內球面φ19.15 0.0130 mm的加工要求,假如運用刀片VCMW070204加工,有必要精修刀尖圓弧半徑精度,使得rε<0.013 9mm。
(3)進給絲杠螺母副空隙對加工球面的影響?,F代數控車床遍及選用滾珠絲杠螺母副作為伺服進給執(zhí)行元件,盡管滾珠絲杠螺母副進行了預緊,在受載及運轉中不可避免會發(fā)生回程空隙。在編程時有必要引起注意,避免回程空隙引起形位差錯。在加工圖4所示零件時,能夠選用一段程序從A點車到C點,但車刀在經過B點時,X軸進給由正向轉換為反向,反向脈沖使絲杠反轉,消除空隙所需的反轉沒有使車刀得到應有的X反向進給,形成AB段與BC段形狀不對稱(見圖12),形成球面不圓。當回程空隙超越0.065mm時,車出的球面就超出
公役帶。因此,當車削精細球面時,假如車床回程空隙超越零件公役1/3,有必要編兩段程序,一段從A到B,另一段從C到B。這樣避免了圖12所示形狀差錯,但會發(fā)生如圖13所示由Z軸進給反向形成的形狀差錯,盡管左右是對稱的,但晦氣于球形研磨東西定心。
為此,在編程時選用積極補償的辦法,使圓弧AB段、CB段Z向各少進給0.005mm(沿X向少進給0.000 001 3mm),即便AB、CB兩端圓弧在B點相交,B點不再是圓的象限點,而是脫離象限點的圓上點,精車后橢球形狀如圖14所示。