【廣告】
采用某一種結構的流動性試樣,改變型砂的水分、煤粉含量、澆注溫度、直澆道高度等因素中
的一個因素,以判斷該變動因素對充型能力的影響。各種測定合金流動性的試樣都可用以測
定合金的充型能力。
流動性試樣的類型很多,如螺旋形、球形、U形、楔形、豎琴形、真空試樣 (即用真
空吸鑄法)等。在生產和科學研究中應用多的是螺旋形試樣,如圖116所示,其優(yōu)點是
靈敏度高、對比形象、可供金屬液流動相當長的距離 (如15m),而鑄型的輪廓尺寸并不太
大。缺點是金屬流線彎曲,沿途阻力損失較大,流程越長,散熱越多。
鑄件的凝固實際上是不會進行的。所以增加過熱程度,相當于提高了鑄型的溫度,使鑄件的溫度梯度減小。
在金屬型鑄造中,由于鑄型具有較大的導熱能力,而過熱熱量所占比重又很少,能夠迅
速傳導出去,所以澆注溫度的影響不十分明顯。
(4)鑄件結構的影響 厚壁鑄件比薄壁件含有更多的熱量,當凝固層逐漸向中心推進
時,必然要把鑄型加熱到更高的溫度。鑄件越厚大,溫度梯度就越小。薄壁件比厚壁件的溫
度梯度大。鑄件的性質復雜程度也對溫度場有較大的影響,鑄件的棱角和彎曲表面與平面壁
的散熱條件不同,在鑄件表面積相同的情況下,向外部凸出的曲面,如球面、圓柱表面、L
形鑄件的外角。
3.凝固方式對鑄件質量的影響
鑄件的致密性和健全性與合金的凝固
方式密切相關。由上節(jié)所述可知,在鑄件斷面溫度場相近的情況下,無論何種合金,它們的
結晶溫度范圍的大小對凝固方式的影響有共同的規(guī)律性。根據(jù)結晶溫度范圍將合金分為窄結
晶溫度范圍合金、寬結晶溫度范圍合金和中等結晶溫度范圍合金三種類型。
由于純金屬、共晶成分合金和窄結晶溫度范圍的合金在一般的鑄造條件下是以逐層方式
凝固的,其凝固前沿直接與液態(tài)金屬接觸。當液態(tài)金屬凝固成為固體而發(fā)生體積收縮時,可
以不斷地得到液體的補充,所以產生分散性縮松的傾向性小。