【廣告】
人工智能控制器
建立相匹配的控制模型,同時根據(jù)數(shù)據(jù)實時反饋選擇控制方案,持續(xù)進化,給出優(yōu)控制參數(shù)值。品投運后云端一鍵操作,的簡單背后是強大的算法支持:決策機TMAI可根據(jù)用戶設(shè)置的室溫目標(biāo)數(shù)據(jù),完成復(fù)雜運算后直接給出控制目標(biāo)參數(shù),如供水溫度等。決策機TMAI模型可以解決傳統(tǒng)控制模型中室溫數(shù)據(jù)滯后性問題,結(jié)合氣候參數(shù)提前預(yù)測、預(yù)知合理控制目標(biāo)值,提前干預(yù),平抑室溫波動。
但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實際應(yīng)用的例子(學(xué)術(shù)研究組實現(xiàn)少,工業(yè)運用的就更少了),大多數(shù)研究只給出了理論或結(jié)果,因此,常規(guī)控制器在將來仍要使用相當(dāng)長一段時間。為此,本文論述了人工智能在電氣傳動領(lǐng)域中的應(yīng)用。將PID控制和模糊控制相結(jié)合,控制直流電動機.首先對直流電動 機的PID控制進行,鑒于其參數(shù)變化范圍大,整定過程繁鎖
與驅(qū)動器的特性無關(guān)。現(xiàn)在沒有使用人工智能的控制算法對特定對象控制效果十分好,但對其他控制對象效果就不會一致性地好,因此對必須具體對象具體設(shè)計。它們對新數(shù)據(jù)或新信息具有很好的適應(yīng)性。它們能解決常規(guī)方法不能解決的問題。它們具有很好的抗噪聲干擾能力。它們的實現(xiàn)十分便宜,特別是使用小配置時。 它們很容易擴展和修改。