【廣告】
諧波系列的電磁干擾幅度受Q1和Q2的通斷影響。這些回路面積控制對于降低電磁干擾是很重要的,在PCB走線布線時就要預(yù)先考慮清器件的布局問題。在測量漏源電壓VDS的上升時間tr和下降時間tf,或流經(jīng)Q1和Q2的電流上升率di/dt 時,可以很明顯看到這一點。這也表示,我們可以很簡單地通過減緩Q1或Q2的通斷速度來降低電磁干擾水平。事實正是如此,延長開關(guān)時間的確對頻率高于 f=1/πtr的諧波有很大影響。不過,此時必須在增加散熱和降低損耗間進行折中。盡管如此,對這些參數(shù)加以控制仍是一個好方法,它有助于在電磁干擾和熱性能間取得平衡。具體可以通過增加一個小阻值電阻(通常小于5Ω)實現(xiàn),該電阻與Q1和Q2的柵極串聯(lián)即可控制tr和tf,你也可以給柵極電阻串聯(lián)一個 “關(guān)斷二極管”來獨立控制過渡時間tr或tf(見圖3)。這其實是一個迭代過程,甚至連經(jīng)驗豐富的電源設(shè)計人員都使用這種方法。我們的終目標是通過放慢晶體管的通斷速度,使電磁干擾降低至可接受的水平,同時保證其溫度足夠低以確保穩(wěn)定性。
期望大家在選購電源模塊時多一份細心,少一份浮躁,不要錯過細節(jié)疑問。想要了解更多電源模塊的資訊,歡迎撥打圖片上的熱線電話?。?!
Ott關(guān)于不同模式電磁干擾水平的公式(2)示意了回路面積對電路電磁干擾水平產(chǎn)生的直接線性影響。多個電源模塊并聯(lián)應(yīng)用的方法工程師在設(shè)計電源系統(tǒng)時,當一個電源模塊無法滿足系統(tǒng)設(shè)計要求,通常會采用多個電源模塊并聯(lián)應(yīng)用。E=263×10-16(f2AI)(1/r) (2)輻射場正比于下列參數(shù):涉及的諧波頻率(f,單位Hz)、回路面積(A,單位m2)、電流(I)和測量距離(r,單位m)。此概念可以推廣到所有利用梯形波形進行電路設(shè)計的場合,不過本文僅討論電源設(shè)計。參考圖4中的交流模型,研究其回路電流流動情況:起點為輸入電容器,然后在Q1導通期間流向Q1,再通過L1進入輸出電容器,后返回輸入電容器中。當Q1關(guān)斷、Q2導通時,就形成了第二個回路。之后存儲在L1內(nèi)的能量流經(jīng)輸出電容器和Q2,如圖5所示。這些回路面積控制對于降低電磁干擾是很重要的,在PCB走線布線時就要預(yù)先考慮清器件的布局問題。當然,回路面積能做到多小也是有實際限制的。
開關(guān)電源不同于線性電源,開關(guān)電源利用的切換晶體管多半是在全開模式(飽和區(qū))及全閉模式(截止區(qū))之間切換,這兩個模式都有低耗散的特點,切換之間的轉(zhuǎn)換會有較高的耗散,但時間很短,因此比較節(jié)省能源,產(chǎn)生廢熱較少。電源模塊常見異常輸入電壓過高電源模塊輸入電壓過高,輕則導致系統(tǒng)無法正常工作,重則燒毀電路。理想上,開關(guān)電源本身是不會消耗電能的。電壓穩(wěn)壓是透過調(diào)整晶體管導通及斷路的時間來達到。相反的,線性電源在產(chǎn)生輸出電壓的過程中,晶體管工作在放大區(qū),本身也會消耗電能。開關(guān)電源的高轉(zhuǎn)換效率是其一大優(yōu)點,而且因為開關(guān)電源工作頻率高,可以使用小尺寸、輕重量的變壓器,因此開關(guān)電源也會比線性電源的尺寸要小,重量也會比較輕。