【廣告】
De BF和Catalano LA等人近提出一個(gè)新型沉浸粒子換熱器,它使用非常小的固體顆粒作為中間媒介來(lái)執(zhí)行兩個(gè)氣體在不同的溫度之間流動(dòng)的熱傳導(dǎo),開(kāi)發(fā)了一種一維模型的理論計(jì)算換熱管長(zhǎng)度,確保規(guī)定的熱交換和評(píng)價(jià)粒子特性的影響;提供了一個(gè)數(shù)值程序設(shè)計(jì)優(yōu)化熱交換器的其他幾何參數(shù),比如直徑和角度的入口和出口管道和粒子注入模式。(3)管束的_l幾封頭和下封頭沒(méi)有參與整個(gè)換熱器的傳熱和流動(dòng),不影響數(shù)值計(jì)算的結(jié)果,因此在建模時(shí)將上封頭和下封頭進(jìn)行簡(jiǎn)化處理。對(duì)用于火力發(fā)電廠的換熱器,換熱溫度通常提供高于8000C,為了滿足這一條件,熱交換器應(yīng)該選區(qū)特殊的材料一一陶瓷,Monteiro DB等人門(mén)用CFD模擬來(lái)評(píng)估雷諾數(shù)在500到1500之間時(shí)傳熱因子和摩擦因子,比較了模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)。
對(duì)管殼式換熱器強(qiáng)化管外傳熱進(jìn)行了數(shù)值模擬研宄,提出并分析了一種新型的傳熱強(qiáng)化元件——旋流片作為管殼式換熱器管隙間支撐物的傳熱強(qiáng)化機(jī)理。4mm,換熱器運(yùn)行穩(wěn)定時(shí),管殼式換熱器殼程入u處的含砂率較高,大約在so%左右,殼程整體砂體積變化范圍在5%-20%之間,由于本次分析的砂粒徑較大,為0。在實(shí)驗(yàn)基礎(chǔ)上,采用周期性單元流道模型數(shù)值模擬了旋流片產(chǎn)生的衰減性自旋流的流動(dòng)和傳熱特性,并采用分段綜合因子分析了傳熱強(qiáng)化的機(jī)理。結(jié)果顯示,旋流片能起到擾流作用,并使流體強(qiáng)烈地沖刷傳熱管壁面強(qiáng)化傳熱。
有旋流片段的綜合因子,尾流段的綜合因子接近于,在自旋流段的綜合因子,應(yīng)當(dāng)充分利用自旋流段低阻的特點(diǎn)對(duì)換熱器進(jìn)行優(yōu)化。當(dāng)換熱器傳熱進(jìn)行一段時(shí)間后換熱器內(nèi)的殼側(cè)溫度會(huì)達(dá)到飽和出現(xiàn)沸騰,沸騰產(chǎn)生的大量蒸汽在換熱器的“尖角”處聚,會(huì)對(duì)換熱器內(nèi)流體的傳熱和流動(dòng)特性產(chǎn)生影響。對(duì)復(fù)合波紋板片的板式換熱器的換熱阻力特性進(jìn)行了數(shù)值模擬研究,采用非結(jié)構(gòu)化網(wǎng)格,分別選用層流和瑞流模型,數(shù)值計(jì)算得到復(fù)合波紋型板式換熱器內(nèi)部的速度場(chǎng),以及復(fù)合波紋型板式換熱器在不同數(shù)范圍內(nèi)的換熱準(zhǔn)則方程式和摩擦系數(shù)關(guān)系式,證明了用數(shù)值計(jì)算方法研究復(fù)合波紋型板式換熱器流動(dòng)與換熱性能的可行性。東北大學(xué)的尹俊以乂為開(kāi)發(fā)平臺(tái),利用數(shù)據(jù)庫(kù)技術(shù),建立了獨(dú)立、幵放、數(shù)據(jù)共享、運(yùn)行可靠的傳熱介質(zhì)物理性能數(shù)據(jù)庫(kù),并實(shí)現(xiàn)了這些數(shù)據(jù)庫(kù)的動(dòng)態(tài)查詢。
建立了一種復(fù)雜的數(shù)學(xué)模型,用于預(yù)測(cè)套管式換熱器內(nèi)流體的流動(dòng)及傳熱特性的數(shù)學(xué)模型,包括計(jì)算流體力學(xué)模型和計(jì)算傳熱學(xué)模型。對(duì)同軸徑向熱管換熱器殼程進(jìn)行模擬計(jì)算,分析煙,速度、溫度及局部對(duì)流換熱系數(shù)沿殼程的變化規(guī)律,并尋求換熱器結(jié)構(gòu)參數(shù)優(yōu)化值。其中,計(jì)算傳熱學(xué)模型中的瑞流擴(kuò)散系數(shù)是利用溫度方差和溫度方差耗散率來(lái)求解,而不是利用通常采用的數(shù)假設(shè)值或?qū)嶒?yàn)測(cè)定值來(lái)求解。分析換熱器的物理模型,對(duì)模型進(jìn)行適當(dāng)?shù)暮?jiǎn)化,分別對(duì)換熱器的管側(cè)和殼側(cè)的溫度場(chǎng)進(jìn)行分析,研宄傳熱管束內(nèi)部的傳熱過(guò)程,同時(shí)分析換熱器殼側(cè)不同位置處的換熱情況。對(duì)換熱器的出口平均溫度進(jìn)行分析,分析出口平均溫度與設(shè)計(jì)溫度之間的誤差,評(píng)價(jià)換熱器的換熱性能。對(duì)換熱器殼側(cè)的速度場(chǎng)進(jìn)行研究,分析換熱器的結(jié)構(gòu)對(duì)自然循環(huán)的影響,并提出相關(guān)的意見(jiàn)對(duì)換熱器進(jìn)行優(yōu)化分析。
管殼式換熱器運(yùn)行過(guò)程中的速度矢量分布,在換熱器運(yùn)行過(guò)程中,換熱器殼程入口段的速度矢量值在0.4m/s;川頁(yè)著折流板走向,換熱器殼程內(nèi)砂的速度矢量值在0.6m/s至2m/s之間變化,在折流板上方的砂速度;在折流板逆向換熱器殼程內(nèi)介質(zhì)流動(dòng)方向的背部,固體砂的速度矢量值,大約為0. I m/s。2mm時(shí),管殼式換熱器模擬運(yùn)行達(dá)到穩(wěn)定的情沉下,換熱器殼程內(nèi)沿?fù)Q熱器管民方向各個(gè)截而的砂體積分情況。這是由于折流板的阻擋作用,降低了砂的速度。當(dāng)砂粒徑較大更容易在速度降低區(qū)域形成砂沉積,衛(wèi)比砂粒徑0.2m m時(shí)更為明顯。當(dāng)砂粒徑為0.4mm,換熱器運(yùn)行穩(wěn)定時(shí),管殼式換熱器殼程入u處的含砂率較高,大約在so%左右,殼程整體砂體積變化范圍在5%-20%之間,由于本次分析的砂粒徑較大,為0.4mm,故在殼程折流板根部有少量砂沉積,但沉積區(qū)占整個(gè)殼程的體積分?jǐn)?shù)低于5%。