【廣告】
無論出現(xiàn)哪種管殼式冷凝器故障,都會降低換熱器的換熱效率,影響系統(tǒng)的正常運行。近年來,粗加工裝置換熱器內(nèi)漏、結(jié)塘堵塞問題越來越突出,尤其換熱器,已嚴(yán)重影響裝置的平穩(wěn)運行。對沉浸式污水換熱器的堵塞、結(jié)塘和腐燭問題進行了研究,建立了沉浸式污水換熱器的傳熱模型,并通過實驗驗證了模型的準(zhǔn)確性。目前,原穩(wěn)站管殼式換熱器運行效果多人為經(jīng)驗判斷,不能及時準(zhǔn)確地對運行效果、存在問題進行診斷。因此,換熱器在線檢測技術(shù)開發(fā)與應(yīng)用是提高粗加工裝置運行安全性的手段之一。本課題通過研究油田用管殼式換熱器內(nèi)部結(jié)塘及泄漏問題,建立換熱器運行傳熱與流動數(shù)學(xué)模型,分析換熱器管壁結(jié)拒及泄漏對換熱器換熱流動特性的影響,并根據(jù)現(xiàn)場運行參數(shù),對換熱器的換熱性能指標(biāo)進行算例分析,從而對換熱器設(shè)備檢修與維護提供參考,同時可為油田用管殼式換熱器的改造與設(shè)計提供借鑒思想。
換熱器流動傳熱性能模擬和等人釆用多孔介質(zhì)模型對液態(tài)金屬換熱器和蒸汽發(fā)生器進行了數(shù)值模擬計算,并將得到的結(jié)果與試驗結(jié)果進行對比??紤]介質(zhì)在管束間流動各項異性的特點,在分布阻力和體積多孔度的基礎(chǔ)上,提出了表面滲透度的概念,將其與試驗結(jié)果進行對比,取得了理想的結(jié)果。4mm,換熱器運行穩(wěn)定時,管殼式換熱器殼程入u處的含砂率較高,大約在so%左右,殼程整體砂體積變化范圍在5%-20%之間,由于本次分析的砂粒徑較大,為0。采用多孔介質(zhì)模型,對電廠蒸汽冷凝器的工作特性進行了數(shù)值模擬計算。由于此模型的物理過程存在相變,導(dǎo)致模擬變得更加復(fù)雜,因而計算中采用了簡單的各向同性假設(shè)和一方程模型,并將其與試驗結(jié)果進行對比,結(jié)果吻合較好。
N Jiang和J Li對螺旋管式換熱器的壓力降進行了數(shù)值模擬研究。Ozkaya和Aradag等人[4]利用CFD軟件數(shù)值模擬研究了V字形密封板式換熱器的流動傳熱特性,模擬不同進出口溫度和質(zhì)量流率的工況,得到了換熱器冷端和熱端的出口溫度和壓降,基于實驗數(shù)據(jù),分析了不同努塞爾數(shù)和摩擦系數(shù)的相關(guān)性?;诠軞な綋Q熱器進出口動態(tài)參數(shù)一溫度、壓力等,對管殼式換熱器內(nèi)部故障進行診斷評價研宄。Kotcioglu i和Nasiri KM等人應(yīng)用理想換熱器模型進行數(shù)值模擬研究,使用修改后的k-‘湍流模型,得到矩形通道板翅縱向打斷、放大和收縮時的溫度、速度和壓力分布圖。
采用計算流體軟件對連續(xù)型螺旋折流板換熱器的流動傳熱特性進行了數(shù)值模擬研究,對連續(xù)型螺旋折流板換熱器的結(jié)構(gòu)參數(shù)進行了優(yōu)化分析研究。上海交通大學(xué)的曾偉平在研究板式換熱器的換熱和壓降過程中,先從單相流在板式換熱器流動出發(fā),建立了單相的換熱和壓降模型,獲得某種具體板型的換熱及壓降關(guān)聯(lián)式系數(shù),提出兩相流在板式換熱器中換熱的換熱關(guān)聯(lián)式和壓降公式。譽金機械運用CFD數(shù)值模擬方法,借助FLUENT數(shù)值模擬軟件對管殼式換熱器的三維模型進行模擬,通過對換熱器結(jié)垢和泄漏時的速度場、溫度場等分析,得出泄漏和結(jié)垢對換熱器流動傳熱性能的影響,為下一步利用熱工參數(shù)評價換熱器結(jié)垢和泄漏提供理論依據(jù)。水一水換熱器,用扁換熱管代替圓換熱管使之兼有兩種換熱器的優(yōu)點。為了便于對比,同時設(shè)計制造了一臺傳統(tǒng)管殼式換熱器。采用單相水為工質(zhì),對扁管殼式換熱器進行了大量的實驗研究,分析管程流量,殼程流量等因素對其傳熱和阻力性能的影響。
管殼式冷凝器邊界條件:入口為速度入口邊界,出口為壓力出口邊界,。對于沒有定義的邊界面軟件默認(rèn)為墻體邊界。在本課題中,根據(jù)大慶油田分公司產(chǎn)量,原穩(wěn)站管殼式換熱器殼程入口速度在之間,根據(jù)物性和模型尺寸,計算得出換熱器殼程的雷諾數(shù)之間,所以換熱器殼程內(nèi)部流動為層流,多相流模型選為混合模型,混合物模型可用于兩相流或多相流(流體或顆粒)。采用有限體積法,使用分離式求解器,穩(wěn)態(tài)隱式格式求解;速度壓力稱合方式采用基于交錯網(wǎng)格的算法;流通介質(zhì)為含砂,物性參數(shù)為等效溫度下的常量;假設(shè)入口來流的速度均勾分布,忽略重力影響,殼體壁面和折流板采用不可滲透、無滑移絕熱邊界。東北大學(xué)的尹俊以乂為開發(fā)平臺,利用數(shù)據(jù)庫技術(shù),建立了獨立、幵放、數(shù)據(jù)共享、運行可靠的傳熱介質(zhì)物理性能數(shù)據(jù)庫,并實現(xiàn)了這些數(shù)據(jù)庫的動態(tài)查詢。使用速度入口和壓力出口邊界,采用層流的模型;選用二階迎風(fēng)格式。