【廣告】
熱敏電阻消耗的能量對溫度的影響用耗散常數(shù)來表示,它指將熱敏電阻溫度提高比環(huán)境溫度高1℃所需要的毫瓦數(shù)。耗散常數(shù)因熱敏電阻的封裝、管腳規(guī)格、包封材料及其它因素不同而不一樣。
系統(tǒng)所允許的自熱量及限流電阻大小由測量精度決定,測量精度為±5℃的測量系統(tǒng)比精度為±1℃測量系統(tǒng)可承受的熱敏電阻自熱要大?!?
應(yīng)注意拉升電阻的阻值必須進(jìn)行計(jì)算,以限定整個(gè)測量溫度范圍內(nèi)的自熱功耗。給定出電阻值以后,由于熱敏電阻阻值變化,耗散功率在不同溫度下也有所不同。
因?yàn)闊崦綦娮璧母鞣N特性,加上其本身非常穩(wěn)定,所以經(jīng)常被用在各種高科技器械中,起到保護(hù)器械的作用。而在人體醫(yī)學(xué)中對于血管等狹小空間的溫度測量,也能夠用到熱敏電阻。這方面就要用到熱敏電阻的溫度特性了。
熱敏電阻顧名思義,就是因?yàn)闇囟茸兓a(chǎn)生電阻值的變化。系統(tǒng)所允許的自熱量及限流電阻大小由測量精度決定,測量精度為±5℃的測量系統(tǒng)比精度為±1℃測量系統(tǒng)可承受的熱敏電阻自熱要大。這種特性能夠被用在測量一定區(qū)域內(nèi)的溫度數(shù)據(jù),同時(shí)還能夠根據(jù)溫度變化調(diào)整電阻值。這兩種反向應(yīng)用能夠使得熱敏電阻被用到更多的場合。因?yàn)椴牧系淖饔?,?dāng)溫度升高,電阻值也會逐漸升高,這是種線性規(guī)律。而這種規(guī)律反過來也同樣適用。
熱敏電阻工作原理
熱敏電阻的基本電氣特性是其電阻值隨溫度變化而改變,熱敏電阻自身溫度會隨周圍溫度或電流通過熱敏電阻而導(dǎo)致的自熱而改變。如果想要知道兩點(diǎn)之間某一溫度下的阻值,可以用這個(gè)曲線來估計(jì),也可以直接計(jì)算出電阻值,計(jì)算公式如下:這里T指開氏溫度,A、B、C、D是常數(shù),根據(jù)熱敏電阻的特性而各有不同,這些參數(shù)由熱敏電阻的制造商提供。如在溫度測量、控制和補(bǔ)償?shù)膽?yīng)用中,要求熱敏電阻自耗功率維持在小,免得引起自熱。當(dāng)周圍溫度保持不變時(shí),熱敏電阻的阻值是熱敏電阻自耗功率的函數(shù),此時(shí)熱敏電阻溫度升高到高于環(huán)境溫度。
NTC熱敏電阻廠家在有些工作條件下,溫度可升高100~200℃電阻可降至低電流條件下電阻值的千分之在有些應(yīng)用領(lǐng)域可利用熱敏電阻自身加熱特性。在所有被動式溫度傳感器中,熱敏電阻的靈敏度(即溫度每變化一度時(shí)電阻的變化)高,但熱敏電阻的電阻/溫度曲線是非線性的。在自熱狀態(tài)下,熱敏電阻對改變熱敏電阻的熱傳導(dǎo)率的任何條件都是熱敏感的,如果散熱速率可理想地固定不變,則熱敏電阻對功率輸入是敏感的,因而,熱敏電阻適合于電壓電平或功率電平控制場合。