【廣告】
人工智能控制器
以用戶綜合室溫為控制目標(biāo),直接指導(dǎo)現(xiàn)場(chǎng)換熱站、燃?xì)忮仩t的供水溫度控制,實(shí)現(xiàn)供熱系統(tǒng)智能化升級(jí)。智能決策機(jī)TM通過(guò)通訊系統(tǒng)及云端獲取一次、二次側(cè)流量、壓力、溫度、抽樣室溫、氣候參數(shù)等數(shù)據(jù)。決策機(jī)TM內(nèi)置的人工智能AI具備邏輯推演、規(guī)律識(shí)別并自動(dòng)尋優(yōu)能力,可在2~3周時(shí)間內(nèi)完成大數(shù)據(jù)深度學(xué)習(xí)
不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。這樣的分類就能得到較好的總體理解,也有利于控制策略的統(tǒng)一開(kāi)發(fā)。這些AI函數(shù)近似器比常規(guī)的函數(shù)估計(jì)器具有更多的優(yōu)勢(shì),它們的設(shè)計(jì)不需要控制對(duì)象的模型(在許多場(chǎng)合,很難得到實(shí)際控制對(duì)象的動(dòng)態(tài)方程,實(shí)際控制對(duì)象的模型在控制器設(shè)計(jì)時(shí)往往有很多不確實(shí)性因素,例如:參數(shù)變化,非線性時(shí),往往不知道)。
模糊邏輯的應(yīng)用 在大多數(shù)討論模糊邏輯在交流傳動(dòng)中運(yùn)用的文章中,都介紹的是用模糊控制器取代常規(guī)的速度調(diào)節(jié)器,可英國(guó)Aberdeen大學(xué)開(kāi)發(fā)的全數(shù)字傳動(dòng)系統(tǒng)中有多個(gè)模糊控制器,這些模糊控制器不僅用來(lái)取代常規(guī)的PI或PID控制器,同時(shí)也用于其他任務(wù)。該大學(xué)還把模糊神經(jīng)控制器用于各種全數(shù)字高動(dòng)態(tài)性能傳動(dòng)系統(tǒng)開(kāi)發(fā)中。