【廣告】
隨著我國工業(yè)的快速發(fā)展, 工業(yè)廢水排放量激增, 文獻(xiàn)顯示, 其排放總量約為690億t, 其中, 高鹽廢水產(chǎn)量約占總廢水量的5%, 且每年仍在以2%的速度增長.由于此類廢水鹽分含量高、存在大量高毒易揮發(fā)的有機污染物, 難以直接采用生化處理, 而傳統(tǒng)物化處理技術(shù), 如電滲析和反滲透等, 存在處理工藝復(fù)雜、能耗成本居高不下等問題.因此, 亟需開發(fā)一種新型的綠色節(jié)能和經(jīng)濟(jì)環(huán)保的高鹽廢水處理技術(shù).
在生物除鐵錳硝化耦合CANON工藝中, 提高CANON過程去除的氨氮能夠降低水中DO的消耗, 提高生物濾柱的抗沖擊負(fù)荷.有研究表明在氨氮僅通過硝化作用去除的生物濾柱中提升濾柱運行濾速不僅會導(dǎo)致濾料表面的水流剪切力增大, 降低硝化細(xì)菌對DO等基質(zhì)的網(wǎng)捕效率, 并且會縮短濾柱的EBCT(空床接觸時間), 導(dǎo)致硝化反應(yīng)時間減少進(jìn)而使硝化作用對氨氮的去除率降低.故由上述可知, 濾速增加會影響氨氮僅通過硝化作用去除的生物濾柱中氨氮的去除, 而為明晰在生物除鐵錳硝化耦合CANON工藝中濾速對氨氮去除的影響, 本實驗在出水合格的情況下梯次調(diào)節(jié)濾柱的運行濾速, 探究不同進(jìn)水濃度時濾速對硝化作用及CANON過程的影響.鑒于此, 筆者在東北某地水廠運行了生物除鐵錳硝化耦合CANON工藝, 探究濾速對低溫含鐵錳氨地下水中氨去除的影響, 并以此分析水質(zhì)對低溫含鐵錳氨地下水中氨去除的影響.
中水回用采用組合膜工藝,就是把精濾、超濾、納濾、反滲透和電滲析等膜處理技術(shù)進(jìn)行合理組合,把經(jīng)過預(yù)處理的出水通過組合膜處理,達(dá)到中水回用的指標(biāo)要求。組合膜工藝的優(yōu)勢就是實現(xiàn)零排放,其次是可以降低預(yù)處理的出水指標(biāo)要求,降低預(yù)處理的投資和運行成本。組合膜工藝的不足之處就是投資較大,且有運行成本。
對于那些經(jīng)過預(yù)處理后不能達(dá)標(biāo)排放的廢水,增加中水回用工藝,把未達(dá)標(biāo)廢水通過膜技術(shù)分離為純水和濃水,純水回到生產(chǎn)線或循環(huán)水系統(tǒng),濃水回到預(yù)處理過程重新處理,這是的方法。