【廣告】
水渣烘干機分級器內孔直徑D 取值150~160mm時,樣品A、樣品B實驗的出籽率均大于50%,故烘干機使用此區(qū)間的內孔直徑進行實驗時,有未干燥或未干燥徹底的玫瑰花籽排出;當位于醉前端的小車上的物料水分含量降到預訂數值后,該物料小車被人工拉出烘干地道窯,并送入冷卻風室,以便對物料進行冷卻,冷卻后的物料可到達醉終要求的水分含量。分級器內孔直徑D ?。福啊保保埃恚?時,樣品A、樣品B實驗的出籽率均低于20%,此時烘干機干燥后的玫瑰花籽無法正常排出;水渣烘干機分級器內孔直徑D ?。保保啊保矗埃恚頃r,樣品B實驗的出籽率逐步增大接近至100%,樣品A實驗的出籽率幾乎為0。
綜上所述分級器內孔直徑D ?。保保啊保矗埃恚?時,能夠同時滿足烘干機內玫瑰花籽安全貯藏含水率W0≤8%正常排出,油菜籽含水率W1=20.78%不出籽的設計要求。干燥溫度對單位時刻失水率的影響玫瑰花籽品質受溫度影響較大,應根據不同水渣烘干機類型嚴格控制干燥過程中的醉高料溫。干燥機一般的干燥溫度為75~85℃,不得超越90℃,故選取干燥器進風口溫度T=60~90℃進行實驗。隨著氣流速度的增大,單位時刻失水率呈先增大后減小的趨勢,且在氣流速度19m/s時獲得醉大值。實驗時,稱取玫瑰花籽樣品A,每組5kg,取氣流速度v=20m/s、分級器內孔直徑D=140mm,測定進風口溫度在60,70,80,90 ℃對單位時刻失水率的影響。
水渣烘干機
結果表明:跟著溫度的升高,單位時刻失水率逐步增大。溫度從60℃增大到80℃時,單位時刻失水率增大顯著,溫度從80℃增大到90℃時,單位時刻失水率較高,且單位時間失水率根本維持在1%/min左右,可以猜測,溫度持續(xù)增大,其單位時刻失水率變化很少,能量消耗將會大幅增加。干燥溫度對單位時刻失水率的影響玫瑰花籽品質受溫度影響較大,應根據不同水渣烘干機類型嚴格控制干燥過程中的醉高料溫。故玫瑰花籽干燥溫度宜取70~90℃。
水渣烘干機氣流速度對單位時刻失水率的影響
實驗時,稱取玫瑰花籽樣品A,每組5kg,取干燥溫度T=80℃、分級器內孔直徑D=140mm,測定進風口風速在17,19,22,25m/s時對單位時刻失水率的影響。
鍵盤及顯示模塊是水渣烘干機溫控體系完成人機交互的重要手段。本體系中顯示器設定操作界面,包括:開機、設定、待機、運轉、報警、完畢等6 個界面;鍵盤用來設定方針溫度、時間、參數,以及操控體系的作業(yè)狀況轉化。顯示器選用迪文屏幕類型DMT80480C070_03W,屏幕明晰,操作便利,反應靈敏,交互及時。水渣烘干機界面層的形成界面層的界說是:在熱風干燥的過程中,流經物料外表的熱空氣因為物料的阻撓,在物料表層形成的薄薄層流層。設計鍵盤選用非編碼鍵盤,選用中止方式作業(yè)。
溫控體系設計(軟件)
水渣烘干機經過操控器實時檢測烘干箱內的溫度、時間等相關信息,并依據預設的參數對數據進行分析處理,操控分級,監(jiān)控溫度傳感器等部件作業(yè),若發(fā)現異常,操控單元能自我毛病診斷并輸出報警信號。整個控制軟件選用模塊化結構進行編寫設計,遵循模塊內部數據結構緊湊,模塊數據之間關系松散的原則,便于編寫、調試、修正、增刪。隨著我國牧草行業(yè)的集約化和自動化程度逐步提高,中國牧草行業(yè)水平基本到達世界的先進水平,然而還存在出產效率低、烘干效果不理想等諸多問題。
主程序設計
水渣烘干機主程序模塊的首要作業(yè)是上電后,對體系進行初始化,構建體系整體軟件結構。初始化包括對單片機的初始化,A/D 芯片初始化和串口初始化等。初始化完成后進行毛病檢測,包括:檢測鍵盤、液晶屏,檢測芯片以及單片機等芯片的作業(yè),以保證體系的正常運轉。水渣烘干機盛載著物料的小車隊在軌跡上沿著從進料口到出料口的方向做間歇移動。如果存在毛病,則啟動自我診斷功能,判別毛病類型,保存當前運轉狀況,輸出報警信號,排除障礙后,進行復位康復運轉。體系病則等待溫度、時間設定,若參數已經設定好,則判別體系運轉鍵是否按下,若體系開始運轉,將依次調用各個相關模塊,循環(huán)操控直到體系停止運轉。
研究了熱泵輔助太陽能烘干鮮棗設備的技能原理并進行了參數設計,斷定了9 塊空氣集熱器和12 匹熱泵。通過試驗得出鮮棗的干燥規(guī)律分為4 個階段: 預熱升溫階段、蒸騰階段、干燥完結階段和降溫排濕階段。
水渣烘干機空氣能烘干機組匹配
1 000 kg 紅棗烘干房的熱負荷為18. 9 kW,本方案設計運用KFD-20II ( A) 空氣源熱風熱泵烘干機1臺,適用環(huán)境溫度- 5 ~ 40 ℃。在規(guī)范工況下,該機型每臺可產熱量20 kW > 18. 9kW,可滿足烘干需求。室內機風量可根據烘烤工藝要求匹配設計水渣烘干機選用變頻調速風機,并根據烘干要求及時調節(jié)風機風量,提高烘干質量。室內機風量可根據烘烤工藝要求匹配設計水渣烘干機選用變頻調速風機,并根據烘干要求及時調節(jié)風機風量,提高烘干質量。
太陽能焦熱器設計與匹配
為了充分利用綠色環(huán)保動力,在烘干房的頂部安裝太陽能空氣集熱器作為輔助動力,然后削減電能的耗費。
天津的太陽能資源較為富足,屬于我國二等太陽能輻照地區(qū),位于東徑117. 10°,北緯39. 06°,年照時數為2 600 ~ 2 800 h。紅棗收成烘干時節(jié)為秋分( 9 月22、23 日) 后30 d 左右,從氣候數據庫可知此刻天津的日均勻輻照量及日均勻輻射時刻。被干燥物料在干燥過程中的溫度散布對干燥工藝的施行具有重要的指導作用,有待咱們進行深化的研討。
水渣烘干機方形批循環(huán)式谷物干燥技能, 該技能采用大風量薄層干燥、間歇式加熱、干燥加緩蘇, 并且緩蘇的時間較長, 減少了稻谷在干燥過程中的爆腰現象。這種技能已發(fā)展到遠紅外與熱風組合干燥, 橫置多槽式干燥的水平。
這兩種技能首要運用于國外發(fā)達國家, 技能水平高, 可以大批量作業(yè), 成本低, 。國內外現階段首要運用這六種干燥技能對玉米進行烘干, 依據實際不同的情況和環(huán)境選用一種或許組合多種干燥技能。在我國, 橫流式、順流式、逆流式和混流式干燥技能使用較廣泛, 而水渣烘干機圓筒內循環(huán)和方形批循環(huán)在國外使用較多, 首要原因是我國烘干設計較小, 玉米收成難以形成設計, 烘干優(yōu)勢得不到體現,玉米烘干普及程度很低。相較而言, 圓筒內循環(huán)和方形批循環(huán)成本低, 烘干, 水渣烘干機并在國外組合遠紅外干燥技能。一起,主風機將加熱的熱空氣送入烘干箱內,而排風機將熱空氣從烘干箱經導流管至加熱器循環(huán)運用,節(jié)能環(huán)保提搞效率。近年來, 跟著軟件的不斷開發(fā), 這些干燥技能逐漸向電腦操控方向發(fā)展, 尤其是計算機的模仿, 對干燥技能的發(fā)展和優(yōu)化也起著重要的作用。為合適我國玉米大國國情的需要, 推廣這兩種技術實在必要。