【廣告】
人工智能控制器
總而言之,當采用自適應模糊神經控制器,規(guī)則庫和隸屬函數在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現這個過程,但主要的目標是使用系統技術實現穩(wěn)定的解,并且找到的拓樸結構配置,自學習迅速,收斂快速。模糊邏輯控制應用 主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調速控制系統中。
運用常規(guī)反向傳播學習算法。該系統由兩個子系統構成,一個系統通過電氣動態(tài)參數的辯識自適應控制定子電流,另一個系統通過對機電系統參數的辯識自適應控制轉子速度。后值得指出的是現在發(fā)表的大多數有關ANN對各種電機參數估計的,一個共同的特點是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學習算法的模型不同或被估計的參數不同。
能模仿人的決策和推理模糊控制行為。反模糊化實現量化和反模糊化。有很多反模糊化技術,例如,大化反模糊化,中間平均技術等。輸出結點的權重調整迭代不同于隱藏結點的權重調整迭代。通過使用反向傳播技術,能得到需要的非線性函數近似值,該算法包括有學習速率參數,對網絡的特性有很大影響。些模糊控制器不僅用來取代常規(guī)的PI或PID控制器,同時也用于其他任務