【廣告】
當耐高溫軸流風(fēng)機葉頂間隙形狀發(fā)生變化時,耐高溫的軸流風(fēng)機,不可避免地會引起葉頂及其附近的吸力面和壓力面流場的分布。由于葉尖間隙的存在,泄漏流將與通道內(nèi)的主流混合,在吸入面頂角形成泄漏旋渦。耐高溫軸流風(fēng)機與方案3相比,方案2具有幾乎相同的區(qū)范圍,但葉尖間隙較大,有利于防止動靜部件之間的摩擦,而方案6具有明顯的性能退化,易于分析其損耗機理。為此,分析了三種葉尖間隙:均勻間隙、方案2和方案6。旋渦是描述旋渦運動的重要特征量,其大小可以反映旋渦的強度。在間隙均勻的情況下,渦量分布從葉片前緣到后緣呈下降趨勢,流入量能有效地粘附在吸力面上,因此耐高溫軸流風(fēng)機渦量相對較小。由于主流與泄漏流的相互作用,葉片頂端的渦度比吸力面大得多,較大渦度出現(xiàn)在吸力面拐角處和葉片頂端附近。中間葉片頂部渦度強度明顯增大,這是由于間隙收縮導(dǎo)致葉片前緣泄漏面積增大,導(dǎo)致泄漏流量增大,主流與泄漏流量的混合程度增大,渦度強度增大。耐高溫軸流風(fēng)機葉尖間隙的大小沿流動方向減小,即葉片葉尖越靠近殼體,泄漏旋渦越靠近葉片上部和中部。副作用減少。
本文以方案中耐高溫軸流風(fēng)機的定子葉片為例進行了詳細設(shè)計,優(yōu)化了S1流面葉型,耐高溫軸流風(fēng)機采用三維葉片技術(shù)改善了定子葉柵內(nèi)的流動。通過三維數(shù)值模擬,對S2流面設(shè)計中的損失和滯后角模型進行了標定,為葉片三維建模提供了依據(jù)。通過與初步三維設(shè)計結(jié)果的比較,兩種設(shè)計方案的氣動參數(shù)徑向分布一致,證實了耐高溫軸流風(fēng)機設(shè)計過程中S2流面設(shè)計的準確性和可靠性。由于葉尖泄漏流的存在,葉尖壓力比與氣流角(圖中灰色虛擬線圈所示的面積)之間存在一定的偏差,但通過三維CFD的修正,s2的設(shè)計趨勢預(yù)測了葉尖泄漏流對氣動參數(shù)徑向分布的影響;bec在高負荷下,定子根部出現(xiàn)了氣流分離現(xiàn)象,導(dǎo)致了出口氣流角和S2設(shè)置的初步三維設(shè)計。預(yù)測結(jié)果略有不同(圖中橙色虛線圈所示的區(qū)域)。耐高溫軸流風(fēng)機利用一條非均勻有理B-sline曲線來描述由四個控制點(紅點)控制的曲線,包括前緣點和后緣點。葉片體由四條非均勻曲面、兩個吸力面和兩個壓力面組成,同時與較大切圓(灰圓)和前緣后緣橢圓弧相切。利用MIT MISES程序?qū)1型拖纜葉片進行了流場分析。采用B-L(Baldwin-Lomax)湍流模型和AGS(Abu-Ghamman-Shaw)旁路過渡模型描述了過渡過程。
耐高溫軸流風(fēng)機葉尖渦度的增大可以有效地阻礙泄漏流的通過,耐高溫軸流風(fēng)機,使耐高溫軸流風(fēng)機泄漏流與主流混合造成的損失減小,葉片前緣泄漏量的增加小于中、后緣泄漏量的增加??傮w上,漏風(fēng)量減少,提高了風(fēng)機的性能。這與參考文獻中得到的前、后緣對耐高溫軸流風(fēng)機總壓損失系數(shù)的影響是一致的。隨著間隙的逐漸增大,葉頂前部的渦度強度增大,后緣的渦度強度減小,嵌入式耐高溫軸流風(fēng)機,總體變化較小,泄漏量略有增加。葉片吸力前緣中部渦度強度略有增加,小型耐高溫軸流風(fēng)機,沿弦長方向吸力面中部和后部渦度強度基本不變。耐高溫軸流風(fēng)機葉片前緣附近的渦度強度急劇增加。這是由于前緣點高度的變化導(dǎo)致的葉尖流動角度的變化。前緣點渦度強度的增加阻礙了吸力面附近的流入,也降低了主流與泄漏流的混合程度。雖然方案6的進風(fēng)速度有所降低,但由于葉頂和后緣附近的渦度強度降低,耐高溫軸流風(fēng)機效率總體降低,相應(yīng)的泄漏面積和泄漏流量增大。軸向速度分布可以反映轉(zhuǎn)子葉片流道內(nèi)的流動能力和分離尾跡區(qū)的特征。因此,轉(zhuǎn)子葉片出口軸向速度分布的徑向分布如圖6所示,用于分析流量。由于葉根和葉頂端壁附件的附面層較厚,導(dǎo)致流體流過該區(qū)域后的軸向速度較小,而葉頂附件又因泄漏存在使軸向速度進一步減小。
企業(yè): 山東冠熙環(huán)保設(shè)備有限公司
手機: 15684302892
電話: 0536-3690068
地址: 山東省臨朐縣223省道與南環(huán)路交叉口往南2公里路西